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Foreword 

 
 
On behalf of the ASPAI’ 2024 Organizing Committee, I introduce with pleasure these proceedings devoted to 
contributions from the 6th International Conference on Advances in Signal Processing and Artificial Intelligence 
(ASPAI' 2024), 17-19 April 2024, Funchal (Madeira Island), Portugal. 
 
Advances in artificial intelligence (AI) and signal processing are driving the growth of the artificial intelligence 
market as improved appropriate technologies is critical to offer enhanced drones, self-driving cars, robotics, etc. 
Today, more and more sensor manufacturers are using machine learning to sensors and signal data for analyses. 
The machine learning for sensors and signal data is becoming easier than ever: hardware is becoming smaller and 
sensors are getting cheaper, making Internet of things devices widely available for a variety of applications ranging 
from predictive maintenance to user behavior monitoring. Whether we are using sounds, vibrations, images, 
electrical signals or accelerometer or other kinds of sensor data, we can build now richer analytics by teaching a 
machine to detect and classify events happening in real-time, at the edge, using an inexpensive microcontroller 
for processing - even with noisy, high variation data. 
 
The global artificial intelligence market size was valued at US $ 136.55 billion in 2022 and is projected to expand 
at a compound annual growth rate (CAGR) of 15.83 % from 2023 to 2030 to rich US $ 738.80 bn.  Artificial 
intelligences currently transforming the manufacturing industry. Virtual reality, automation, Internet of Things 
(IoT), and robotics are some important features of AI that are benefitting the manufacturing industry. AI has been 
one of the fastest-growing technologies in recent years. The market growth is mainly driven by factors such as the 
increasing adoption of cloud-based applications and services, growing big data, and increasing demand for 
intelligent virtual assistants. The major restraint for such market is the limited number of AI technology experts. 
 
The Series of ASPAI Conferences have been launched to fill-in this gap and to provide a forum for open discussion 
and development of emerging artificial intelligence and appropriate signal processing technologies focused on 
real-word implementations by offering Hardware, Software, Services, Technology (Machine Learning, Natural 
Language Processing, Context-Aware Computing, Computer Vision and Signal Processing). The goal of the 
conference is to provide an interactive environment for establishing collaboration, exchanging ideas, and 
facilitating discussion between researchers, manufacturers and users. The first ASPAI conference has taken place 
in Barcelona, Spain in 2019, the second (2020) and the third (2021) – in the virtual format due to the COVID-19 
pandemic – in Berlin (Germany) and Porto (Portugal). In 2022 and 2023 we have returned to the in-person 
conference format in Corfu (Greece) and Tenerife (Canary Islands), Spain, respectively. 
 
The conference is organized by the International Frequency Sensor Association (IFSA) - one of the major 
professional, non-profit association serving for sensor industry and academy since 1999, in technical cooperation 
with the media partners – IOS Press (journal ‘Integrated Computer-Aided Engineering’); World Scientific 
(International Journal of Neural Systems) and MDPI (journals ‘Algorithms’ and ‘Electronics’). The conference 
program provides an opportunity for researchers interested in signal processing and artificial intelligence to 
discuss their latest results and exchange ideas on the new trends. 
 
I hope that these proceedings will give readers an excellent overview of important and diversity topics discussed 
at the conference. 
 
We thank all authors for submitting their latest work, thus contributing to the excellent technical contents of the 
Conference. Especially, we would like to thank the individuals and organizations that worked together diligently 
to make this Conference a success, and to the members of the International Program Committee for the thorough 
and careful review of the papers. It is important to point out that the great majority of the efforts in organizing the 
technical program of the Conference came from volunteers. 
 
 
Prof., Dr. Sergey Y. Yurish 
ASPAI’ 2024 Conference Chairman 
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End-user Confidence in Artificial Intelligence Predictions 
 

Z. Kam 1 L. Peraccio 2 and G. Nicora 2 
1 Weizmann Institute of Science, Rehovot 76100, Israel 

2 University of Pavia, 27100 Pavia, Italy 
Tel.: +972 545303136, +39 3381106288 

E-mails: zvi.kam@weizmann.ac.il, giovanna.nicora@unipv.it 
 
 
Summary: Scientific measurements always include their error-bars. This is not the practice for predictions given by Artificial 
Intelligence algorithms (AI). Thus, the credibility of their outputs is not known. We describe here a compact array structure, 

of  retization. Discbased applications-learning-set used for training supervised machine which is calculated once from the data
dimensional feature space allow to count the training events in each bin. -binning of the multi-feature values and histogram

assigning  introduced test case, thus-counts provide directly readable estimate to the density of cases similar to each user-Bin
a level of confidence to the AI prediction, and alerting users for badly supported prediction to outlier test cases. 
 
Keywords: Artificial intelligence, Supervised machine learning, Training data, Error estimate, Credibility of AI predictions. 
 
 
1. Introduction 

 
An ever-increasing number of applications offered 

to the public are based on Artificial Intelligence (AI) 
algorithms. Supervised machine-learning-based 
applications (SML) are first trained on set of cases, 
each case consists of an array of features quantifying 
the case conditions, with the corresponding class. After 
this training phase, these applications output predicted 
class for each newly presented test case. The larger and 
more diverse the training set of cases is, the better the 
SML applications are expected to function. However, 
training cases include largely data from common 
conditions. When exposed to test inputs yet unseen or 
under-represented in the training set, SML 
generalization is poor and SML is bound to be fooled, 
yet always outputs a prediction. During the training 
phase of SML application development, evaluation of 
error statistics helps optimization and demonstration of 
its validity. We argue that also at the user-application 
phase, in addition to the prediction, there is need for an 
estimate of error probability, in order to assign a 
confidence level and alert for weakly-supported 
predictions. 

 
 

2. The Algorithm 
 
Nicora et. Al. [1] have recently reviewed methods 

for evaluating errors for AI algorithms output. SML 
prediction errors are derived from two properties of the 
set of training cases, namely, 1. The number of training 
cases similar to the test case (density of training cases); 
2. Proximity to decision-borders. Low density implies 
that the SML application was not trained by a sufficient 
number of similar cases, and therefore what is named 
“Reliability” [2] of the prediction offered may be low. 
Proximity to borders means that small changes in the 
test case feature values can alter the prediction, which 

is named low “Local-Fit” [3]. Nicora et.al. [1] 
demonstrated, with simulated and medical data sets, 
that these two properties provide excellent estimates to 
errors. Yet, as much as we know, there are few 
practical procedures applicable at the point-of-use for 
estimating Reliability and Local-Fit for an individual 
test case. The training data are often too bulky to 
deliver to the end-user, even when they are open. In 
addition, users “out in the field” do not have the 
computer resources and the time to execute error 
estimation algorithms even when the training set and 
the algorithms are provided. We propose here a 
practical and compact array structure that allows user 
to directly estimate predictive reliability for each test 
case presented to a SML application. 
 
 
2.1. Reliability 
 

A continuous probability distribution function can 
be approximated by a discrete histogram. Repeated 
trials, with values following the probability 
distribution, increment a histogram bin counts, when 
the values fall within bin minimum and maximum 
ranges (bin edges). Similarly, a multi-dimensional 
histogram can count the number of training cases that 
fall, according to the values of all their features, within 
bin hyper-volume edges, and approximate their local 
density. Dougherty et al. [4] introduced discretization 
of continuous feature space in bins, for use by AI 
algorithms. Here we export the multi-dimensional 
histogram bins array to the end-user for directly 
reading the density of cases similar to the input  
test case. 

Following is the formulation: The training set Sn[k] 
includes K cases, and each case is defined by an array 
of N feature values: 
 

 Sn[k] (n = 1,N) (k = 1,K) (1) 
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Densities of the training data cases is approximated 
by counting the number of training cases that fall 
within discrete N-dimensional histogram bin edges 
defined as follows: We segment the values of each 
feature number n (n = 1,N) into M channels, each in a 
range between edges Vnm-1 and Vnm (m = 1,M). For 
uniformly distributed feature values between 0 and 1, 
the edges can be, for example, linearly spaced: 
 

 Vn,m = m*DV (m = 0,M) DV = 1/M (2) 
 

Logarithmic edges can be defined by the equation: 
 

 Vn,m = ½(M-m) (m = 1,M) and Vn0 = 0 (3) 
 

N-dimensional histogram bins, B[m[1]…m[N]] are 
defined by channel numbers m(n) for all n features and 
stored in an array B[mm], (mm = 1,MN), where bin 
index, mm, is derived from the channel numbers, m(n), 
and channel numbers can be uniquely calculated from 
bin index, since channel numbers are the digits of the 
bin index presented in base M: 
 

 mm = 1+Σn = 1,N { (m[n]*M (n-1) } (4) 
 

Bin-counts for B[mm] are incremented by a 
training case Sn[k], if all feature values fall between the 
corresponding channel edges: 

 
 Vn,m[n]-1 ≥ Sn(k)>Vn,m[n] (n = 1,N) (5) 

 
Thus, the accumulated counts for the whole 

training set approximate the density of cases around 
the feature values, Fn, of each bin hyper-volume center: 
 

 Fn(m[1]…m[N]) = 1/2(Vn,m(n)-1+Vn,m(n)) 
(n = 1,N) (6) 

 
For a test cases Tm’(n) the corresponding channel 

numbers m’[n] are similarly derived by (5) and bin 
index by (4), thus directly addressing N-dimensional 
histogram bin counts, approximating the density of 
training cases similar to the test case, and hence 
estimating Reliability of output prediction for this test 
case input. 

For N = 10-dimensional feature space, and values 
segmented into M = 10 channels, MN = 1010 =  
=10 Gb array for the bins  is required, which may be a 
bit heavy to handle. M = 6 channels require about 
60Mbytes, easily handled by applications. 

The number of channels may be optimized for each 
input feature, depending on its characteristics. Some 
features may be binary (exist or absent, such as a 
genetic mutation), while others may be quantified at 
higher number of channels, spread linearly, 
logarithmically (such as protein expression levels, 
typically quantified by 2- or 10-folds) or other  
channel-spacings that match the probability 

distribution of each feature. Application of Principal 
Component Analysis dramatically compacts the 
dimension of the bin-counts array. 

Multi-dimensional data used in training 
applications are often clustered. This property provides 
ways to compress the size of the multi-dimensional bin 
storage space, for example by Sparse Matrix 
Presentation [5], increasing the number of features that 
can be analyzed simultaneously. 
 
 
2.2. Local-fit 
 

Decision-borders proximity to bin hyper-volume 
can be evaluated by counting the number of altered 
predictions for neighbors to bin hyper-volume center 
with features calculated by local variations [3]. If all 
neighbors produce a consistent prediction, Local-Fit is 
scored high. The larger the number of neighbors 
yielding an altered prediction, indicating close-by 
decision-borders, the less Local-Fitted is the 
prediction. The alterations are scored once in the 
multidimensional bin array and made available to the 
end-user via the same structure as for the Reliability. 
 
 
4. Conclusions 
 

Supplementing multi-dimensional bin array 
structure to SML applications provides a directly 
readable Reliability and Local-Fit estimate to each 
end-users test case input, adding to the output a level 
of confidence. This would gain faith to AI-based 
applications, presently considered by the public to be 
magical black boxes. 
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Cuffless Estimation of Arterial Blood Pressure Based on Heart Pulse 
Transmission Parameters Determined from Multi-channel PPG Signals 

 
J. Přibil, A. Přibilová and I. Frollo 

Institute of Measurement Science, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia 
Tel.: + 421-2-59104543 

E-mail: jiri.pribil@savba.sk 
 
 
Summary: The paper describes an experiment with indirect cuffless estimation of arterial blood pressure (ABP) from 
two/three-channel photoplethysmography (PPG) signals. It is important when the actual ABPs cannot be measured, e.g. during 
scanning inside a magnetic resonance imager. The proposed procedure uses heart pulse transmission parameters (HPTPs) 
extracted from the second derivative of the PPG signal. The linear regression method is used to calculate the relation between 
the determined HPTPs and the ABPs measured in parallel by a blood pressure monitor. The ABP values are estimated by the 
inverse conversion characteristic calculated from these linear relations. Final estimation errors obtained from this first-step 
experiment achieve acceptable values of -2.6/-3.5 mm Hg for systolic/diastolic ABPs. 
 
Keywords: Arterial blood pressure, Estimation by linear regression, Heart pulse transmission parameters, 
Photoplethysmography signal. 
 
 
1. Introduction 

 
Persons examined in a magnetic resonance imager 

(MRI) are exposed to noise and vibration causing them 
stress that manifests mainly by heart rate (HR) and 
arterial blood pressure (ABP) changes [1]. The HR 
changes can be detected from a photoplethysmography 
(PPG) signal, while the systolic/diastolic blood 
pressure (SBP/DBP) values are measured by a blood 
pressure monitor (BPM) [2]. However, this type of a 
measurement arrangement is less comfortable for 
tested persons, and it causes problems with practical 
realization of experiments. In addition, the BPM 
device cannot be used for measurement inside the 
scanning area of a running MRI device due to 
interaction with a working magnetic field and a strong 
RF disturbance. It is well known that the second 
derivative PPG wave (SD-PPG) [3] consists of five 
areas corresponding to the time domain features [4]. 
These parameters are then fed into the inference 
function of a regression version of the least squares 
support vector machine algorithm [5]. The estimation 
error of this method typically achieves about  
5-10 % [6]. 

The precision of ABP estimation may be improved 
by the method based on heart pulse transmission 
parameters (HPTP). Originally, the pulse transmission 
time (PTT) represented the time difference between R 
peak of the electrocardiogram and the systolic peak of 
the PPG measured by sensors located at a known 
distance [7]. The PTT can be also determined from two 
or more PPG waves sensed in parallel [8]. Another 
parameter describing current state of a human 
cardiovascular system of a tested person is the pulse 
wave velocity (PWV). We present also usefulness of 
derived parameters: relative PTT (rPPT) and relative 
PWV (rPWV). 

The main motivation of this work was to test 
whether these HPTPs are suitable for ABP estimation 
and whether they give sufficient estimation accuracy. 
This paper describes the procedure for HPTPs 
determination from the preprocessed  
two/three-channel SD-PPG signals. The current 
experiments use two small databases of PPG records 
collected in the frame of our previous research [9-10]. 
The linear regression method is used to perform ABP 
estimation from the HPTPs. The numerical 
comparison based on a relative estimation error (REE) 
is performed to verify estimation accuracy of 
SBP/DBP values. Partial results determined separately 
from two used databases were compared by the scatter 
plots mapping correlations between the measured and 
estimated ABP values. Final estimation errors for both 
databases together were also graphically evaluated 
using the Bland-Altman plots. 

 
 

2. Methods 
 
The proposed method of SBP and DBP values 

estimation from HPTP parameters determined from 
the multi-channel PPG signal records can be divided to 
four phases: 

1. Creation of a database of the HPTPs from the 
pre-processed SD-PPG signal records together 
with the HR and ABP values measured in 
parallel; 

2. Application of a linear regression method to 
find a linear relation between the determined 
HPTPs and the HR/ABPBPM values; 

3. Calculation of inverse conversion 
characteristics for estimation of the SBP/DBP 
values from the HPTP parameters; 
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4. Testing the correctness and evaluation the 
precision of the proposed estimation method 
(see the block diagram in Fig. 1). 

The algorithm used for HPTP values determination 
is relatively simple – but stable, and sufficiently 
precise. The PPG signal analysis after pre-processing 
phase starts with the systolic peaks PSYS localization 
procedure. Next, the heart pulse period THP and the 
pulse amplitude (Ap) are determined from the PPG 
wave signal – as demonstrated in Fig. 2. The PTT and 
other derived parameters are next calculated from the 
difference ∆ PSYS in samples between adjacent PSYS 
positions of two/or more PPG waves (see an example 
in Fig. 3). Using the sampling frequency fs in kHz the 
PTT in ms is determined as 

 
 PTT = ∆PSYS / fs (1) 

 

The pulse wave velocity represents the relationship 
between the PTT and the measuring distance Dx 

 
 PWV = Dx / PTT (2) 

 
The relative parameter rPTT defined as a 

percentual ratio 
 

 rPTT = (PTT / THP)×100 (3) 
 

is invariant on the current HR value in beat per minute 
(bpm), which can be calculated as 

 
 HR = 60×fs/THP (4) 

 
Like to (3), the relative PWV is defined as 
 

 rPWV = Dx / rPTT (5) 

 

 
 

Fig. 1. Block diagram of the method for testing the correctness and evaluation the precision of estimated SBP/DBPs. 
 

 
 

Fig. 2. An example of 5-sec part of a PPG wave  
with localized systolic heart peaks (with amplitudes Ap) and determined heart pulse periods THP. 

 

 
 

Fig. 3. An example of determining the time differences between systolic pulses ∆PSYSa,b from two PPG waves sensed in 
parallel (PPGA and PPGB); fs = 1 kHz. 
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HPTPs determined in this way are then statistically 
processed to obtain representative values (one per the 
whole analyzed PPG signal record) for further use in 
the estimation process. The simplest method for 
calculation of the representative value is to use the 
mean value. A situation often occurs in which the 
distribution of the analyzed parameter has a  
non-Gaussian character, so the mean value will not 
provide a correct result. In this case it is better to 
determine the value hMAX corresponding to the 
maximum occurrence oMAX [%] in the histogram 
however, oMAX must be relatively high (typically more 
than 25 % – see the left graph in Fig. 4. Otherwise, 
better precision is achieved by calculation using the 
mean method (see the right graph in Fig. 4). 

All these HPTPs are used to find a linear relation 
with BPBPM in mmHg measured in parallel by the BPM 
device to obtain linear regression characteristics – see 
an example in Fig. 5. Next, the inverse conversion 
characteristic is calculated to estimate ABP values 
from the used HPTPs. Finally, the SBP/DBP values are 
estimated by applying the majority function (one set of 
values per one tested PPG record). For numerical 
evaluation of estimation results the relative percentage 
error is used 

 
 REEABP = (ABPEST−BPBPM)/BPBPM×100, (6) 

 
where ABPEST represents the estimated SBP/DBP and 
BPBPM is the real value measured. For the purpose of 
visualization of the estimation error a simple absolute 
difference ∆ SBP/DBP  =  ABPEST − BPBPM is applied. 
These differences are necessary for creation of the 
Bland-Altman plots and for mapping correlations 
between the measured and estimated ABP values 
based on the scatter plots. 

 
 

 
 

Fig. 4. Histograms of HR and PTT parameters 
demonstrating different maximum occurrence oMAX. 

 
 

 
 

Fig. 5. Fitted linear relations between determined PWV  
and measured SBP/DBP values. 

3. Material, Experiments, and Results 
 

Two small PPG signal databases were used in this 
work: the first PPG corpus (DB1) consists of  
two-channel PPG signals originated from 7 male and  
3 female volunteers (aged from 22 to 60 years) [9]. The 
second PPG corpus (DB2) contains three-channel PPG 
signals from 12 subjects (8 males and 4 females, with 
a mean age of 50 years) [10]. All PPG signals were 
picked with the help of special prototypes of wearable 
PPG sensors based on the Arduino micro-controller 
board with the processor ATmega328P and using the 
Pulse Sensors Adafruit 1093 working in a reflectance 
mode and directly producing the SD-PPG wave as an 
output. Data transfer to the control device (laptop, 
tablet, etc.) was realized via Bluetooth (BT) serial 
connection working in the 4.1 standard at 4.2 GHz [9], 
[10]. In the case of PPG records included in the DB1 
corpus, the first optical PPG sensor was always placed 
on the wrist artery and the second one was worn 
successively on each of the fingers of the left/right 
hand (P1-P5). For PPG records from the database DB2 
holds that the first optical sensor was again  
placed on a wrist, the second one on a pinkie (P1), and 
the third one on a forefinger (P4). A typical duration of 
each PPG signal record was 64 sec, so about 60÷80 
PPG cycles can be localized and a similar amount of 
PPG features can be determined (the first and the last 
cycle are ignored). The real number of PPG cycles 
depends on the current HR, was always sufficient to 
obtain stable and credible statistical results necessary 
for final successfulness of the whole estimation 
process. 

Sensing of PPG signals in our experiments was 
accompanied by parallel measurement of BP/HR 
values by the portable BPM device (automatic blood 
pressure monitor BP-A150-30 AFIB by Microlife 
AG). To prevent any possible negative influence of an 
inflated pressure cuff of the BPM on a tested person’s 
blood system, the PPG signal was picked up from the 
fingers of the opposite hand. 
The proposed method of SBP and DBP estimation 
from the PPG signal works in four phases, as described 
in the previous section. The PPG signal processing  
and implementation of the whole estimation  
algorithm were realized in the Matlab environment 
(ver. 2019a). 

Table 1 compares numerical results of the obtained 
REE separately for the databases DB1 and DB2, for 
particular HPTPs and for all parameters together.  

 
 

Table 1. Mean REE percentage values per a HPTP type, 
separately for the used databases DB1 and DB2. 

 
HPTP SBP DB1 DBP DB1 SBP DB2 DBP DB2 
PTT -2.5±2.3 -3.6±2.4 0.1±9.4 2.9±10.1 
PWV -2.7±2.4 -4.2±2.8 0.1±9.6 3.3±9.8 
rPTT -3.5±2.3 -3.9±2.5 1.5±8.9 3.2±10.0 
rPWV -3.1±2.2 -4.0±2.6 2.1±8.8 3.5±10.1 

all -3.1±2.2 -3.9±2.6 0.9±9.0 3.2±9.9 
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Fig. 6 contains scatter plots showing the correlation 
between the measured and the estimated SBP/DBP 
values for the used databases DB1 and DB2 separately. 
Fig. 7 presents the Bland-Altman plots of the final 
estimation accuracy for SBP/DBP using data of both 
databases together. 
 
 

 

 
 
Fig. 6. Scatter plots of correlations between measured 
(SBP/DBPBPM) and estimated (SBP/DBPEST) values  
for: DB1 (upper set of two graphs), and DB2 (lower  
two graphs). 

 
 

 
 

Fig. 7. Bland-Altman plots of the final estimation accuracy 
for SBP/DBP values, and merged DB1, DB2 databases. 
 

 
4. Discussion and Conclusion 
 

While fs  = 125 Hz is sufficient in sensing the PPG 
signals used for determination of basic features of PPG 
waves, higher fs ≥1 kHz must be applied to obtain 
correct values of HPTP parameters. Otherwise, the 
distances ∆ PSYS determined in samples can be too 
short which causes high errors in the time domain, i.e. 
heavy influence on the accuracy stability of the 
determined PPT and other derived parameters. 

The preliminary analysis of mutual positions of 
HPTP and ABP/HRPPG values performed prior to 
practical experiments have shown a detectable data 
grouping effect dependent on the position of PPG 
signal sensing (left/right hands) and the gender of 
tested subjects (male/female) as documented in graphs 
in Fig. 8. For this reason, common values obtained 
from all tested subjects, from PPG signals of all five 

fingers of both hands, without any differentiation were 
used in this work. Next simplification lies in the fact 
that the precision of Dx distance measurement – which 
also affected the accuracy of the PWV and rPWV 
values – was omitted here. In addition, the quality of 
the sensed PPG signals depends essentially on the 
actual state of the skin at the place of an optical sensor. 
It means the skin surface temperature, but also the skin 
color and humidity together with the tested subject 
gender can have influence on the obtained PPG signal. 

 
 

 
 

Fig. 8. Graphs of mutual positions grouped by subject’s 
genders and left/right hands: PTT-HRPPG (upper graph)  

and PWV-SBP/DBP (lower two graphs) for database DB1. 
 
 
Therefore, in the near future, we plan to collect 

another PPG signal database with attached temperature 
values measured by a contact method. The applied 
thermo-element should be integrated directly to the 
optical sensor part to receive the current skin 
temperature at the place of sensor wearing (on a finger 
or a wrist). 

From the point of view of the obtained ABP 
estimation results, the numerical comparison in 
Table 1 shows negative REE (ABPEST < BPBPM) and 
low std (up to 3 %) for DB1. For DB2, REE is positive, 
with higher std (more than 10 %). In both cases, the 
estimation errors are higher for DBP. The final mean 
estimation errors for both databases were following: 
∆ SBP  =  -2.6±10.7, ∆ DBP  =  -3.5±9.7 mmHg. These 
results are acceptable for this first-step experiment, but 
further improvements are necessary before practical 
usage of the proposed method. 
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Summary: Deploying Large Language Models (LLMs) on mobile devices makes all the capabilities of natural language 
processing available on the device. An important use case of LLMs is question answering, which can provide accurate and 
contextually relevant answers to a wide array of user queries. We describe how we managed to port state of the art LLMs to 
mobile devices, enabling them to operate natively on the device. We employ the llama.cpp framework, a flexible and  
self-contained C++ framework for LLM inference. We selected a 6-bit quantized version of the Orca-Mini-3B model with  
3 billion parameters and present the correct prompt format for this model. Experimental results show that LLM inference runs 
in interactive speed on a Galaxy S21 smartphone and that the model delivers high-quality answers to user queries related to 
questions from different subjects like politics, geography or history. 
 
Keywords: Deep learning, Large language models, Question answering, Mobile devices, Termux. 
 

 
1. Introduction 

 
Large Language Models (LLMs) [1] on mobile 

devices enhance natural language processing and 
enable more intuitive interactions. These models 
empower applications such as advanced virtual 
assistants, language translation, text summarization or 
the extraction of key terms in the text (named entity 
extraction). 

An important use case of LLMs is also question 
answering, which can provide accurate and 
contextually relevant answers to a wide array of user 
queries. For example, it can be used for fake news 
detection on a smartphone by querying the LLM about 
the validity of dubious claims made in a news article. 

Because of the limited processing power of a 
typical smartphone, usually the queries for an LLM on 
a mobile device are processed in the cloud and the 
LLM output is sent back to the device. This is the 
standard workflow for the ChatGPT app and most 
other LLM-powered chat apps. But often this is not 
possible or desired, for example for journalists 
operating in areas with limited connectivity or under 
strict monitoring and surveillance of internet traffic 
(e.g. in authoritarian regimes). In this case, the 
processing has to be done on the device. 

In this work, we therefore demonstrate how to port 
LLMs efficiently to mobile devices so that they run 
natively and in interactive speed on a mobile device. In 
the following section, we will describe the software 
framework we employ for running LLMs natively on a 
mobile device (like a smartphone or tablet). Section 3 
describes the specific model we have chosen and the 
proper prompt format for it. In Section 4 we provide 
information about qualitative experiments with the 
LLM and Section 5 concludes the paper. 

 
 
1 https://huggingface.co/docs/hub/models-the-hub 
2 https://github.com/ggerganov/llama.cpp 

2. LLM Framework for On-device Inference 
 

Initially, we tried to do LLM inference natively on 
a mobile device via the TensorFlow Lite (TFLite) 
framework, as it is the most popular framework for  
on-device inference. But for LLMs, practically all 
finetuned models available on the Hugging Face 
model hub1 provide only PyTorch weights, so a 
conversion to TFLite has to be done. Unfortunately, 
during our experiments we noticed that the conversion 
pipeline is quite complex (PyTorch = > ONNX = > 
TensorFlow = > TFLite) and not future-proof, as 
legacy TensorFlow 1.X versions have to be used in 
combination with code from several public GitHub 
repos which are not maintained anymore. 

We therefore opted for the llama.cpp framework2, 
a very flexible and self-contained C++ framework for 
LLM inference on a variety of devices. It can run state 
of the art models like Llama / Llama2 [2], Vicuna [3] 
or Mistral [4] either on CPU or GPU/CUDA and 
provides a lot of options (e.g. for setting temperature, 
context size or sampling method). It supports a variety 
of sub-8bit quantisation methods (from 2 bits to 6 bits 
per parameter), which is crucial for running models 
with billions of parameters on a smartphone with 
limited memory. 

In order to build the C++ libraries and executables 
of the llama.cpp framework, a standard Linux build 
toolchain is needed consisting of a terminal (shell), 
command-line tools, CMake/Make, C/C++ compiler 
and linker and more. For Android, fortunately such a 
build toolchain is available via the Termux app3. It can 
be installed via the Android open-source software 
package manager F-Droid4 and does not need root 
access to the device. It has been used already for deep 

3 https://termux.dev/en/ 
4 https://f-droid.org/ 
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learning tasks, for example for on-device training of 
neural networks as described in [5]. 

After installation of Termux, we open a console 
there and install the necessary tools (like wget, git, 
cmake, clang compiler) via pkg, the Termux package 
manager. We install also the Android screen mirror 
software scrcpy1 on the PC so that we can control the 
device directly on the PC and mirror its screen there. 

For building the llama.cpp binaries, we now clone 
its latest sources from the respective GitHub repo. We 
invoke CMake to generate the Makefile and build all 
binaries via the make command. We compile the 
binaries with model inference done on the CPU, as 
GPU inference relies on CUDA which is not available 
on Android devices. After compiling, several binaries 
are available on the device. The most important ones 
are an executable for direct interactive chatting with 
the LLM and a server application with a REST-API 
which is similar to the OpenAI API for ChatGPT. The 
server application allows for further integration, for 
example into an on-device GUI app for question 
answering. 
 
 
3. Model Selection and Prompt Format 
 

On the Hugging Face model hub there are many 
pretrained large language models available, which 
differ in their network architecture, model size, 
training / finetuning procedure and dataset and their 
task (base model for text completion versus instruct 
model for instruction following and chat). After some 
experiments, we selected the Orca-Mini-3B model2 
with 3 billion parameters. It runs in interactive speed 
on a recent smartphone and provides decent responses 
to a user query due to finetuning via imitation learning 
with the Orca method [6]. We employ a quantized 
model with approximately 5.6 bit per parameter, which 
takes roughly 2.2 GB of CPU RAM on the device. 

For an instruct model, it is important for a good 
performance of the model to use the same prompt 
format (system prompt, user prompt etc.) as was used 
for finetuning the model. For the Orca-Mini-3B model, 
this means that the prompt format has to be as shown 
in the following example: 
"### System:\n You are an AI assistant that follows 
instruction extremely well. Help as much as you 
can.\n\n### User:\n What is the smallest state in India 
?\n\n### Response:\n” 
 
 
4. Experiments and Evaluation 
 

We did a subjective evaluation of the selected 
model by testing its responses for user queries related 
to questions from different subjects like politics, 
geography, history and more. From the tests we can 
infer that the model provides accurate and faithful 

 
 
1 https://github.com/Genymobile/scrcpy 

answers for most of the user queries. Of course, like 
every LLM it can hallucinate (provide false 
information) from time to time. 

An example output of the LLM application for 
direct chat can be seen in Fig. 1. The LLM provides 
correct answers for questions from different domains. 
The output of the model is generated fast enough for 
an interactive chat on a Samsung Galaxy S21 
smartphone. 
 

 
 

Fig. 1. Interactive chat application on a smartphone. 
 
 
5. Conclusion 
 

We demonstrated how to port large language 
models (LLMs) efficiently to mobile devices, so that 
they run natively on the device. We provided 
information on the LLM framework we employ as well 
as the model and proper prompt format for question 
answering. Experiments show that the model runs in 
interactive speed on a Galaxy S21 smartphone and 
provides high-quality answers for the user queries. In 
the future, we will explore recently introduced LLMs 
like phi-2 [7] and GPU acceleration of the model via 
OpenCL or Vulkan on the device. 
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Summary: Segmenting images containing many objects stacked in unstructured piles is a challenging and vital task in robotic 
bin picking applications. Objects in such images are congested and occluded but, nevertheless, must be accurately segmented 
to calculate their 6DoF poses. For fast completion of automated tasks, many of these poses should be calculated and sent to 
the robot controller at once so that the path planning algorithm can prioritize which object to grasp. We show that the Segment 
Anything Model (SAM) can be used as the first step in processing such images to segment individual parts in a bin. However, 
applying SAM to RGB and depth images acquired from the same bin yields different results, with many segmentation masks 
present in only one type of image. Thus, merging two SAM outputs from both image types is suggested to maximize the 
number of segmented parts. 
 
Keywords: Foundation models, Segment Anything Model (SAM), RGB and depth image, Robotic bin picking. 
 
 
1. Introduction 

 
Automated, robotic bin picking aims to pick up a 

part from an unstructured pile of parts in a bin and 
make it available for the next step of the automated 
process [1, 2]. This is usually achieved by using a robot 
with an integrated vision system. Data acquired by the 
vision system must be segmented so that the accurate 
6DoF pose of the selected part from a bin can be 
calculated and provided to the path planning module of 
the robot controller. 

Many different segmentation techniques that 
provide input for pose determination algorithms have 
been proposed [3-6]. Methods based on deep learning 
techniques require prior image annotations and 
training of a model [7, 8]. These tasks are not to be 
easily accomplished in low-volume and  
high-variability scenarios. Recent progress in the 
development of foundation models provides a chance 
to abandon these tasks, which are labor-intensive and 
require sufficient expertise [9]. While the segment 
anything model (SAM) [10] is agnostic to a particular 
part and still needs to be supplemented by some 
postprocessing, the difficulty of such an approach is 
expected to be much smaller than traditional labeling 
and training. 

Fast completion of the picking task requires as 
many well segmented parts as possible. This enables 
the robot’s path planner to select the best obstacle free 
path available, which increases the chances of 
successfully grasping a desired part. To maximize the 
number of accurately segmented parts in a bin, we 
merge two outcomes of SAM applied independently to 
RGB and depth images acquired from the same scene, 
as shown in Fig. 1. While many detections from both 
types of images overlap, we found that, on average,  
40 % are observed only in one type of image. 

Thus, merging two outcomes of SAM gives the 
robot’s path planner more candidates to choose from. 

 
 

Fig. 1. Example of a) RGB; b) depth image. 
 

 
2. Experiment 

 
We used a structured light camera to acquire RGB 

images and the corresponding organized 3D point 
clouds of a bin filled with parts that are relevant in 
manufacturing (e.g., screws for which the CAD model 
was known). The organized point cloud format ensures 
that each of the three Cartesian coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 
forms a 2D matrix of the same size as the 
corresponding RGB image. However, there is an 
essential difference between both types of images: 
while every pixel in an RGB image has three valid 
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entries for red, green, and blue components, some 
pixels in the organized 3D point clouds may not have 
entries and are labeled zero or not-a-number (NaN) as 
a placeholder. In Fig. 2, the RGB image and the 
corresponding binary map with the locations of NaN 
pixels are shown. For each 3D point cloud, the matrix 
of Cartesian z coordinates is converted into a grayscale 
depth image by replacing NaN pixels with 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚, i.e., 
the smallest of all valid 𝑧𝑧 values. 

 
 

 
 

Fig. 2. Example of a) RGB image; b) binary map  
with locations of NaN pixels (white) in depth image. 
 
 
Data from ten instances of random, unstructured 

piles of parts in the bin are acquired, and for each data, 
the RGB and depth images are processed by SAM; an 
example output for both types of images is shown in 
Fig. 3. For all ten acquired piles configurations, 
roughly the same total number 𝑁𝑁 of segmented binary 
masks is observed for RGB and depth images,  
𝑁𝑁 ≈ 3,200. 
 
 
3. Data Postprocessing 
 

Out of all 𝑁𝑁 binary segmentation masks output by 
SAM, only less than a quarter are correct, as shown in 
Fig. 4. To filter them, the oriented bounding box is 
calculated for each subset of 3D points defined by a 
given mask, as shown in Fig. 5. Then, its normalized 
length 𝐿𝐿 and width 𝑊𝑊 are calculated, where 
 

 𝐿𝐿 =  𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶⁄ ,𝑊𝑊 =  𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸 𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶⁄ , (1) 

and 𝐸𝐸𝐸𝐸𝐸𝐸, 𝐶𝐶𝐶𝐶𝐶𝐶 denote experiment and CAD model, 
respectively. Only length and width are used to filter 
correctly segmented masks. The third dimension 
(height 𝐻𝐻𝐸𝐸𝐸𝐸𝐸𝐸) depends strongly on the actual pose of 
the bounding box and is severely affected by noisy 3D 
points. The three dimensions (𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸 ,𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸,𝐻𝐻𝐸𝐸𝐸𝐸𝐸𝐸) of 
bounding boxes in Fig. 5 are: a) (25.8, 12.4, 5.3) 
[mm]; b) (26.4, 12.6, 11.8) [mm]. In Fig. 6, the 
distributions of the normalized bounding box 
dimensions (𝐿𝐿,𝑊𝑊) are plotted. Three distinct clusters 
of points can be seen: cluster A is centered around 
(𝐿𝐿,𝑊𝑊) ≈ (1,1). Visual inspection of the 
corresponding masks output by SAM reveals they are 
in the category of correctly segmented masks, such as 
displayed in Fig. 4(d-f). The two other clusters marked 
in Fig. 6 correspond to incomplete segmentation 
masks: cluster B groups masks similar to those shown 
in Fig. 4b while cluster C groups masks displayed  
in Fig. 4c. 
 
 

 
 

Fig. 3. Output from SAM applied to a) RGB; b) depth 
images shown in Fig. 1. Arbitrary color coding  

for both images. 
 
 
For further processing, only the detections that 

passed the filter ℱ were accepted, where 
 

 ℱ(𝐿𝐿,𝑊𝑊)  =  �1 𝑖𝑖𝑖𝑖 𝐿𝐿 ∈ 𝑳𝑳�  and 𝑊𝑊 ∈ 𝑾𝑾�; 
0 otherwise; 

 (2) 

 
and 𝑳𝑳�  =  [0.904, 1.096], 𝑾𝑾�  =  [0.808, 1.077]. 

These steps are repeated for all ten RGB and depth 
images. The resulting detections are analyzed and 
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grouped into three categories, as shown in Fig. 7: a) 
detections found only in depth images; b) detections 
found in RGB images only; c) detections found in both 
RGB and depth images. A detection is declared 
common for RGB and depth images when the 
overlapping ratio of two binary masks is at least 80 %. 
In Fig. 8, the depth image with overlaid segmentation 
masks is shown for data corresponding to pile number 
𝑛𝑛 = 7. 

 
 

 
 

Fig. 4. Examples of individual masks output by SAM 
applied to depth images, left column (a-c): over- or under-

segmented; right column (d-f): correct, complete. 
 

 
 

Fig. 5. Two examples of the segmented subset of 3D points 
and oriented bounding box. 

 
 

Fig. 6. Distribution of dimensions (𝑳𝑳,𝑾𝑾) for 3D points 
segmented by SAM applied to a) RGB; b) depth images. 

 

 
 

Fig. 7. Number of detections: a) in depth images only;  
b) in RGB only; c) in both RGB and depth. 

 

 
 

Fig. 8. Merged filtered SAM detections are overlaid on 
depth image, with color coding as in Fig. 7. 
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4. Discussion 
 

Subtle differences between RGB and depth images 
of the same scene cause many SAM detections to be 
found in only one of the two images. Data in Fig. 7 
indicate that, on average, segmentation of RGB only 
images yields 46 detections versus 39 for depth images 
only. When results from processing both types of 
images are merged, the average number of  
detections is 55. 

To better understand why some segmentation 
masks are seen only in one type of image, a 
membership map ℳ is created. It is a matrix of the 
same size as the original images processed by SAM, 
and each element in ℳ stores the number 𝜇𝜇 indicating 
how many times a given pixel is a member of different 
segmentation masks. In Fig. 9, examples of 
membership maps are shown for RGB and depth 
images corresponding to the data displayed in Fig. 8. 
The largest observed value of the membership 𝜇𝜇 for 
this data is 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 = 4. Table 1 shows percentage of 
image area occupied by pixels with particular  
values of 𝜇𝜇. 

 

 
 

Fig. 9. Membership maps for output of SAM applied to:  
a) RGB; b) depth image. 

 
 
With such different patterns in 𝓜𝓜 maps observed 

for RGB and depth images, some complete 
segmentation masks are likely to be found in only one 
type of image. 

Examples of such masks are marked in Fig. 8: 
detection 1 is reported only in the depth image, while 
detection 2 is found only in RGB image. In  
Fig. 10(a-c), the masks corresponding to detection 1 
are shown, while in Fig. 10(d-f), the masks 
corresponding to detection 2 are shown. Note that the 
membership values 𝜇𝜇 = 1 in Fig. 9a for individual 

segmentation masks shown in Fig. 10(a, b) and, 
similarly, 𝜇𝜇 = 1 in Fig. 9b for masks displayed  
in Fig. 10(d, e). 
 

 
 

Fig. 10. Left column: examples of incomplete detection  
in RGB image in a) and b), and the complete corresponding 
detection in depth image in c). Right column: incomplete 
detections in depth image in d) and e) and the complete 
corresponding detection in RGB in f). 
 
 

Table 1. Percentage of image area with given 𝝁𝝁. 
 

𝝁𝝁 0 1 2 3 4 
RGB 23 % 20 % 51 % 5 % < 1 % 
Depth 32 % 27 % 37 % 3 % < 1 % 

 
For two complete masks shown in Fig. 10(c, f), the 

corresponding membership values 𝜇𝜇 = 2 in Fig. 9. 
This means that in addition to complete masks for the 
selected parts, SAM also outputs two other incomplete 
masks, similar to those shown in Fig. 10(a, b) and  
Fig. 10(d, e). 

In the described scenario, the correct, complete 
mask is present only for one type of image because 
SAM fails to provide complete masks for both RGB 
and depth images. However, there are also instances 
when SAM outputs complete masks for both images, 
but the detection is reported only for one type of image. 
This happens when the filter ℱ in (2) accepts one 
detection but rejects detection from another image. An 
example of such detection, reported only for the depth 
image, is marked as 3 in Fig. 8. The masks for both 
images are displayed in Fig. 11 using two colors: blue 
color labels pixels belonging to the RGB mask in  
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Fig. 11a and to the depth mask in Fig. 11b. The yellow 
color in Fig. 11a indicates pixels that are also part of 
the RGB mask but are not in the depth mask. Similarly, 
the yellow color in Fig. 11b is used to indicate pixels 
belonging to the depth mask that are not part of the 
RGB mask. As can be seen, segmentation masks for 
both image types look complete and almost identical; 
their overlapping ratio is 95 %. However, only one of 
them, marked as 3, is displayed in Fig. 8 using blue 
color for detections present only in depth images. 

 

 
 

Fig. 11. Output of SAM applied to: a) RGB image; b) depth 
image. Color pixels mark segmentation masks. 

 
As shown in Fig. 12, tiny differences in segmented 

masks visible in Fig. 11 are sufficient to generate two 
sets of 3D points for which the corresponding 
bounding boxes have quite different widths:  
𝑊𝑊 =  1.12 for box in Fig. 12a and 𝑊𝑊 =  1.0 for box 
in Fig. 12b. Since the accepted range for width 𝑊𝑊 in 
the filter ℱ in (2) is set to 𝑾𝑾�  =  [0.808, 1.077], only 
the depth detection passes the filter as 𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅 ∉ 𝑾𝑾� and 
𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ ∈ 𝑾𝑾�. 

A slight increase in the upper bound of the range 𝑾𝑾� 
would prevent this particular RGB detection from 
being rejected. Then, its color label would be changed 
from blue to yellow in Fig. 8 to indicate the detection 
reported for both types of images. However, filter ℱ in 
(2) was introduced to eliminate most incorrect SAM 
detections, such as shown in Fig. 4(a-c). In bin picking 
applications, as many as possible accurately 
determined 6DoF poses of individual parts should be 
provided to the robot controller to select the best 
candidate for grabbing. This may suggest using in filter 
ℱ more relaxed ranges 𝑳𝑳�  and 𝑾𝑾�. However, the risk of 
passing incorrectly segmented 3D data (which will 
result in a failed attempt to grab the corresponding 
part) outweighs a loss of wrongly rejected mask, 
especially if the overall number of accepted masks is 
sufficiently large. 

 
 

Fig. 12. Segmented 3D points with their respective 
bounding boxes for SAM masks obtained from: a) RGB 

image; b) depth image. 
 
 
5. Conclusions 
 

The organized 3D point cloud format enables 
SAM, originally developed for segmenting 2D images, 
to segment 3D data. Most segmentation masks are 
found in both types of images, but a portion of masks 
is reported in one type only: RGB or depth. Therefore, 
outputs from both types of images could be merged to 
maximize the number of detections. 

In bin picking applications, segmentation of an 
individual part is needed to fit a CAD model and get a 
well-estimated 6DoF pose of a part. Fitting a model to 
3D data is a rather time-consuming procedure that may 
fail if a starting pose for fitting is not well selected [11]. 
This usually happens when a subset of 3D points is not 
accurately segmented. For the techniques that rely on 
the segmentation of 2D images to get 3D points, the 
problem starts with either under or over-segmented 2D 
masks. Thus, having a feature that could gauge the 
quality of 2D segmentation before the slow model 
fitting procedure is invoked would be helpful. Since 
SAM provides slightly different outputs for RGB and 
depth images, exploring these differences may provide 
a useful hint about the quality of segmented 2D masks. 
That would reduce the cycle time in bin picking by 
avoiding attempts to fit a model to inaccurately 
segmented 3D points. 
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Summary: Heart failure is a condition occurs if the heart becomes unable to pump enough blood. Congestive heart failure 
(CHF) is a special case of heart failure in which fluid builds up around the heart and in the lungs, causing congestion. Machine 
learning algorithms have been implemented for identification of patients with various diseases. In this paper, the K-nearest 
neighbors algorithm is used to identify patients with CHF from normal subjects. The data is taken from the MIT data base and 
splitted into two groups: trial group and test group. The frequency-domain features are obtained from the wavelet-based 
spectral of the heart rate variability (HRV) data. The KNN algorithm is trained on the trial group and the performance of the 
identification is obtained on the test group. The three well-known metrics: sensitivity, specificity, and accuracy are used to 
evaluate the performance of the system. Different factors are used to optimize the identification efficiency such as the wavelet 
filter type and the value of K (number of neighbors) in the KNN algorithm and the distance metric of the KNN algorithm. The 
best identification accuracy of 88 % is obtained using dmey wavelet filters with K equals 3 and with city block distance metric. 
 
Keywords: Congestive heart failure, KNN, Wavelet packet decomposition, Identification, Frequency domain. 
 
 
1. Introduction 
 
1.1. Heart Failure 

 
Heart failure is a common condition that usually 

develops slowly as the heart muscle weakens and 
needs to work harder to maintain a normal organ blood 
supply. It is often recognized at a more advanced stage 
of the disease, commonly referred to as Congestive 
Heart Failure (CHF). In which, failure of both left and 
right ventricles causes fluid to accumulate in the lungs, 
lower limbs, liver and sometimes the abdominal  
cavity [1]. 

According to the New York Heart Association 
(NYHA) system, which relates symptoms to everyday 
activities and the patient's quality of life, heart failure 
is classified into 4 classes [1]: 

1. Class I (Mild), Symptoms with more than 
ordinary activities; 

2. Class II (Mild), Symptoms with ordinary 
activities; 

3. Class III (Moderate), Symptoms with minimal 
activities; 

4. Class IV (Severe), Symptoms at rest. 
The most important diagnosis test of heart failure 

is the Echocardiogram, which is a noninvasive 
technique using ultrasound to image the heart as it is 
beating in real time. It can determine the degree of 
failure, some of the causes and whether it is on the left 
ventricle, the right ventricle, or both [2]. The 
information from the Echocardiography is also used 
for calculating the ejection fraction (EF), which is the 
percent of the blood pumped out during each heartbeat. 
EF is a simple important measure for determining the 
severity of heart failure. People with a healthy heart 
usually have an EF of 50 percent or greater. Most 

people with heart failure, but not all, have an EF of  
40 percent or less [2]. 

The echocardiogram is the most accurate 
diagnostic test but an expensive one. So, there is a need 
to a noninvasive simple test that helps in determining 
patients who most likely do not need an 
echocardiogram test [3]. 
 
 
1.2. Heart Rate Variability 
 

Heart rate variability (HRV) is referred to as the 
beat-to-beat variation in heart rate. Instantaneous heart 
rate is measured as the time in seconds between peaks 
of two consecutive R waves of the ECG signal. This 
time is referred to as the RRI [3]. The variation of heart 
rate accompanies the variation of several physiological 
activities such as breathing, thermoregulation and 
blood pressure changes [3]. HRV is a result of 
continuous alteration of the autonomic neural 
regulation of the heart i.e. the variation of the balance 
between sympathetic and parasympathetic neural 
activity. The increase of sympathetic tone or decrease 
of parasympathetic activity will increase heart rate [3]. 

Several HRV abnormalities have been described in 
patients with CHF and it has been shown that patients 
with heart failure have decreased HRV [3]. 

Frequency-domain analysis approaches use one of 
the signal transformations such as FFT, wavelet 
transform to estimate the power spectral density of the 
RRI data. The frequency spectrum of the RRI data is 
divided into three main bands [3]: 

• The very low-frequency band (VLF): 
 f ∈ (0.0033 – 0.04) Hz; 

• The low-frequency band (LF):  
f ∈ (0.04 – 0.15) Hz; 
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• The high-frequency band (HF):  
f ∈ (0.15 – 0.4) Hz. 

A wavelet-decomposition with soft decision 
algorithm [4] is used to estimate an approximate power 
spectral density (PSD) of R-R-intervals (RRI) of ECG 
data for screening of congestive heart failure (CHF) 
from normal subjects [5]. The ratio of the power in the 
low-frequency (LF) band to the power in the  
high-frequency (HF) band of the RRI signal is used as 
the classification factor. Both trial and test data are 
drawn from MIT database [6]. The classification factor 
is determined from the trial data and then used to 
classify the test data to evaluate the performance of the 
technique. The receiver operating characteristics 
(ROC) is used to determine the threshold value of the 
classification factor. This technique showed a 
classification efficiency of 96.30 % on trial data and 
88.57 % on test data using dmey wavelet filters. In this 
work machine learning algorithm as KNN is 
implemented to make the system fully automatic. The 
wavelet-packet, which is already present in Matlab 
toolboxes is to be used to simply the technique. 
 
 
1.3. Data 
 

The CHF records and normal records (NSR) were 
drawn from the Physionet website [6]. Two groups of 
CHF and NSR records are used as described below. 
 
1.3.1. Trial Group 
 

This group contains 15 CHF and 12 NSR records 
from MIT-BIH database. These records are used to 
train the machine learning algorithm. 

The subjects of CHF are 11 men with age between 
22 and 71 years, and 4 women with age between  
54 and 63 years. The duration of each record is about 
20 hours. 

The subjects of the NSR records are 5 men, with 
age between 26 and 45 years, and 7 women with age 
between 20 and 50 years. The subjects were found to 
have no significant arrythmias. 
 
1.3.2. Test Group 
 

This group contains 17 CHF and 53 NSR 
recordings that are used to test the machine learning 
algorithm to find its performances. The subjects for the 
CHF records are 8 men, aged 39 to 68, and 2 women 
aged 38 and 59; gender is unknown for the 7 remaining 
records, but aged between 35 and 64 years. 

The NSR data of this group contains 53 long-term 
(about 24 hours) RRI records. The subjects are 30 men, 
aged 28.5 to 76, and 23 women aged 58 to 73. 
 
 
2. Methods 
 

Wavelet-packet decomposition is used to 
decompose the RRI signal into approximation (a(n): 

low-pass component) and details (d(n): high-pass 
component) using a basic wavelet decomposition 
shown in Fig. 1. Both approximation and details can be 
divided more into smaller and smaller bands with a 
specified depth. 
 
 

 
 

Fig. 1. Simple wavelet-decomposition. 
 
 

In this paper, the number of decomposition stages 
is selected to be 5 yielding 32 bands, each covering a 
frequency range of 0.0156 Hz. 

Three features: power of the (VLF, LF, and HF) 
bands can be obtained as below: 
 

 𝑉𝑉𝑉𝑉𝑉𝑉 =  ∑ 𝑃𝑃(𝐵𝐵𝑖𝑖)𝑖𝑖 = 3
𝑖𝑖 = 2 , (1) 

 
 𝐿𝐿𝐿𝐿 =  ∑ 𝑃𝑃(𝐵𝐵𝑖𝑖)𝑖𝑖 = 10

𝑖𝑖 = 4 , (2) 
 

 𝐻𝐻𝐻𝐻 =  ∑ 𝑃𝑃(𝐵𝐵𝑖𝑖)𝑖𝑖 = 25
𝑖𝑖 = 11 , (3) 

 
and then three ratios can be determined: 

1. r1 = The ratio of the power of LF band divided 
by the power of HF band (LF/HF); 

2. r2 = The ratio of the power of VLF band 
divided by the power of LF band (VLF/LF); 

3. r3 = The ratio of the power of VLF band 
divided by the power of HF band (VLF/HF). 

The KNN algorithm is trained on the trial group 
and the performance of the system is obtained from the 
test group. Different values of K and different types of 
distance metrics are applied in the KNN algorithm. 
Different wavelet filters are also implemented and 
their results are compared. 
 
 
3. Results 
 

Results are to be shown in terms of the three  
well-known metrics: sensitivity, specificity and 
accuracy [7]. 

The three metrics are defined in equations (4)-(6), 
and Table 1 defines the terms in the equations in a form 
of confusion matrix. 
 

 Sensitivity (%) = TP×100/(TP+FN), (4) 
 

 Specificity (%) = TN ×100/(TN +FP), (5) 
 

 Accuracy (%) = (TN +TP) ×100/T, (6) 
 
where T is the total number of subjects in the test data, 
positive and negative are CHF and normal, 
respectively. 
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Table 1. Confusion Matrix. 
 

 Predicted Class 
Actual Class Positive (P) Negative (N) 
Positive (P) TP FN 

Negative (N) FP TN 
 
 

Table 2 shows the results of identification using 
different FFT-based features and the KNN algorithm 
with K = 3 and using city block distance metric.  
Tables 3-6 show the results for the wavelet-based 
features using the KNN algorithm (with K = 3 and with 
city block distance metric) and different wavelet filters 
(dmey, db4, coif3, and fk12), respectively. 

 
 

Table 2. FFT results. 
 

 r1 r2  r1 r3  r2 r3 r1 r2 r3 
Sen. 94.11 88.23 94.11 88.23 
Spe. 67.92 73.58 64.15 71.69 
Acc. 74.28 77.14 71.42 75.71 

 
 

Table 3. Wavelet (dmey) results. 
 

 r1 r2  r1 r3  r2 r3 r1 r2 r3 
Sen. 88.23 82.35 82.35 82.35 
Spe. 73.58 90.56 84.90 79.24 
Acc. 77.14 88.57 84.28 80.00 

 
 

Table 4. Wavelet (db4) results. 
 

 r1 r2  r1 r3  r2 r3 r1 r2 r3 
Sen. 88.23 76.47 76.47 82.35 
Spe. 75.47 83.01 79.24 77.35 
Acc. 78.57 81.42 78.57 77.46 

 
 

Table 5. Wavelet (coif3) results. 
 

 r1 r2  r1 r3  r2 r3 r1 r2 r3 
Sen. 88.23 76.47 76.47 82.35 
Spe. 73.58 83.02 81.13 73.58 
Acc. 77.14 81.42 80.00 75.71 

 
 

Table 6. Wavelet (fk14) results. 
 

 r1 r2  r1 r3  r2 r3 r1 r2 r3 
Sen. 88.23 76.47 76.47 82.35 
Spe. 75.47 83.01 83.01 73.58 
Acc. 78.57 81.42 81.42 75.71 

 
 

From Tables 2-6, it is to be concluded that the 
wavelet results are better than FFT and the features 
r1r3 are the best features. It can be also noticed that the 
best wavelet filter is dmey filter. 

Table 7 shows the results for the dmey  
wavelet-based r1r3 features using the KNN algorithm 
at different K values. 

Table 7. Results of different K values. 
 

K Sen. Spe. Acc. 
3 82.35 90.56 88.57 
5 82.35 79.24 80.00 
7 82.35 88.67 87.14 
9 82.35 86.79 85.71 

11 82.35 86.79 85.71 
 
 

It can be seen from Table 7 that K = 3 yields in the 
best result. Table 8 shows the results for the dmey 
wavelet-based r1r3 features using the KNN algorithm 
with the best K = 3 and using different  
distance metrics. 

The best distance metric appears to be the city 
block followed by Euclidean distance and Minkowski 
distance metric. 

 
 

Table 8. Results of different distance metrics. 
 

Distance  Sen. Spe. Acc. 
Cityblock 82.35 90.56 88.57 

Chebychev 82.35 86.79 85.71 
Euclidean 82.35 88.67 87.14 

Minkowski 82.35 88.67 87.14 
 
 

To test the consistency of the algorithm, 
interchanging of the trial data with test date is done. 

Table 9 shows the result of this step for dmey filter 
with r1r3 as features and using city block distance 
metric and different K values. It is to be noted that the 
algorithm even performs better and the results are 
independent of data. 

 
 

Table 9. Results of consistency test 
 

K Sen. Spe. Acc. 
3 80 100 88.88 
5 86.66 100 92.59 
7 86.66 100 92.59 
9 86.66 100 92.59 

11 86.66 100 92.59 
 
 
4. Conclusions 
 

In this paper the wavelet-packet features of the RRI 
signal are used with the KNN machine learning 
algorithm to identify patients with CHF from normal 
subjects. Different wavelet filters are used in the 
system and different K values in the KNN algorithm 
are also implemented with different distance metrics of 
the KNN algorithm. The best identification accuracy 
obtained is 88.57 % using dmey wavelet filters with  
K = 3. The combination of features r1 and r3 gives the 
best result. This result is obtained using the KNN 
algorithm automatically with no need to use ROC or 
obtaining the threshold manually from the trial data. 
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This validates also the use of the wavelet-packet 
instead of the soft-decision wavelet decomposition 
algorithm. Consistency of the algorithm is also tested 
by interchanging the trial group with the test group. 
Results shows that even a higher accuracy of 92.59 % 
is obtained in this step for almost all K greater than 3. 
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Summary: Developing Augmented Reality (AR) applications for urban environments is notably labor-intensive. This is 
largely because verifying the functionality of these applications in their intended settings is required for developers, a process 
often repeated to minimize errors. Such a cycle not only extends the development timeline but also escalates the associated 
costs, affecting location-based AR projects in urban areas. Identifying optimal spots for AR markers presents its own set of 
challenges. To streamline development, the development team leverages Visual Positioning Systems (VPS), utilizing 3D 
models of urban landscapes as test environments. This approach allows for a preassessment of AR applications' performance 
and accuracy within a lab setting, using various mobile and wearable devices, thus eliminating the need for constant site visits 
and disruption of the development workflow.  
 
Keywords: Augmented reality, Virtual reality, Visual positioning systems, Software development, Multi-stereo projection, 
Cave, convolutional neural networks, Digital twins, System hacking. 
 
 
1. Introduction 

 
Developing Augmented Reality (AR) software for 

urban settings typically involves numerous site visits 
to test the accuracy and performance of virtual objects 
within the real world. Each trip aims to identify and 
rectify errors, a cycle repeated until satisfactory results 
are achieved. This not only prolongs the development 
process but significantly increases its costs. By 
adopting a virtual testing environment, our team has 
seen considerable improvements in efficiency, 
enabling faster and more accurate development of AR 
applications.  
 
 
2. Relevant Work 
 
2.1 Augmented Reality Pose Estimation and 

Tracking 
 

AR technology enhances our perception of the real 
world by overlaying virtual objects onto physical 
elements. Pose estimation and tracking determine the 
position and orientation of the user's viewpoint in 
relation to the virtual objects within a three-
dimensional space. These processes ensures that 3D 
content is accurately anchored to the real world, 
providing users with convincing immersive 
experiences.  

Recent advancements in AR technology have led 
to the development of sophisticated tracking 
algorithms that utilize RGB and depth sensors for 
inside-out tracking. These sensors, integral to AR 
glasses and handheld devices, analyze the surrounding 
environment to resolve accurate positioning of virtual 
objects [1]. For static environments, such tracking 

mechanisms have become standard. However, 
dynamic urban settings, where users or objects are in 
motion, present additional challenges. 
One of the main challenges in AR pose estimation is 
maintaining accurate tracking in diverse and complex 
urban landscapes. Fast-moving users, such as those in 
vehicles, necessitate advanced tracking solutions that 
can adapt to rapid changes in the environment. To 
address this, researchers are exploring the integration 
of machine learning techniques with traditional sensor 
data [2]. These approaches aim to improve the 
robustness and accuracy of pose estimation, enabling 
more reliable AR experiences in a variety of settings.  
 
 
2.2 Simulation of AR in VR 
 

The use of virtual environments to simulate AR 
allows for experimentation and usability evaluation, 
provide complete control in the AR environment and 
advantages over testing with true AR systems. AR 
simulations have the potential to provide great benefit 
to AR research, allowing for the investigation of the 
effects of registration errors on task performance and 
accurate manipulation of augmented objects before 
deployment in real-life situations [3].  CAVE systems 
are ideal immersive environments for simulating AR 
scenarios and have been used with success to evaluate 
usability in applications or extend visualization space 
of graph visualizations [4]. Limitations of AR 
simulations in luminance fidelity may affect the 
replication of outdoor scenarios. Modern AR 
applications include the use of Light Detection and 
Ranging (LiDAR) to sense the environment. Such 
applications are not suitable for evaluating in CAVE 
systems because the user is actually surrounded by 
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physical walls and this results to a mismatch between 
the sensor data and the projected 3D scene. 
 
 
2.3. Visual Positioning Systems 
 

Visual Positioning Systems (VPS) enable the 
precise location of an object or user within a given 
space, primarily through the analysis of visual data. 
Unlike traditional positioning systems, which can rely 
on satellite signals (such as GPS) or radio frequencies 
(such as Wi-Fi or Bluetooth), VPS uses image 
recognition and computer vision techniques to 
understand the environment visually. This approach 
can be much more accurate in environments where 
GPS signals are weak or non-existent, such as indoors 
or in densely built urban areas.  

The evolution of VPS has been significantly 
influenced by the adoption of Convolutional Neural 
Networks (CNN) and deep learning algorithms. These 
methods analyze complex visual data, allowing VPS 
to accurately identify features in the environment and 
determine the user's position relative to these features. 
The use of CNNs has also facilitated real-time 6D 
object pose estimation, which calculates the location 
and orientation of a device in three-dimensional space 
[5]. 

VPS function by comparing the view captured 
through a camera with a pre-existing database of 
images or 3D models of the environment. By 
identifying specific landmarks or features in the 
captured video-feed and matching them with its 
database, the system can pinpoint the precise location 
of the camera relative to its surroundings. Also, VPS 
is particularly useful in robotics applications that 
require situational awareness with high accuracy in 
navigation tasks [6].  

VPS elevate the capabilities of AR by enhancing 
the precision of location and orientation tracking in 
visually complex environments. VPS is useful in 
urban settings, where GPS signal degenerates at the 
concrete of buildings and infrastructure. By 
employing VPS, AR applications can deliver more 
immersive and contextually relevant experiences. 
Users can receive navigation aids anchored directly 
onto their real-world view, interact with location-
specific information, or engage with location-based 
gaming experiences. For example, Niantic Inc., 
creator of Pokemon GO, provides VPS technology for 
game developers to use in custom AR applications.   
However, the challenges of pose estimation in 
dynamic, uncontrolled environments are significant. 
Factors like lighting changes, occlusions, and the need 
for real-time processing complicate the task. AR 
systems typically use a combination of sensor data 
(from accelerometers, gyroscopes, and sometimes 
depth sensors) and visual input from cameras to 
achieve this. Recent advancements leverage machine 
learning models, especially CNN, to improve the 
accuracy and speed of pose estimation, enabling more 
seamless and contextually relevant AR experiences, 
like assembly instructions [7]. 

VPS are commercially available and provide 
location-based services and Application Programming 
Interfaces (API) for developers to use in their own 
applications. Google uses its VPS in combination with 
Google Maps to provide AR walking directions 
through mobile phones. Their developer tool 
Geospatial Creator streamlines the creation of 
location based AR applications for indoor and outdoor 
environments. 
 
 
3. Materials and Methods 

 
3.1. Laboratory Setup (AR Simulator) 
 

The AR software development process, especially 
in the Architecture Engineering Construction (AEC) 
domain, is characterized by frequent travels to the AR 
site, measuring accuracy and performance of 
superimposed graphical objects onto physical settings, 
registering errors and then going back to the lab where 
these errors are corrected in the code. This process 
repeats until a satisfying minimal error is achieved and 
evidently increases the software development 
overhead significantly. To reduce this overhead, we 
propose a virtual testing field for AR application 
development. To simulate AR in VR, the CAVE of the 
location-based Immersive Participation Lab (IPLab) at 
Fraunhofer IAO, is used for life-sized projections of 
photorealistic 3D models surrounding AR devices, as 
shown in Fig.1.  This way, actual urban locations are 
visualized (as virtual locations), in a controlled 
laboratory setting.  

 
 

 
 

Fig. 1. CAVE of Immersive Engineering Lab at Fraunhofer 
IAO. Experimental setup to simulate AR Applications. 

 
 

The IPLab is a work and presentation environment, 
which allows for accurately rendering immersive 3D 
graphics in real-time. Using VR, collaborative 
decision making is applied to a variety of industry 
sectors. The main component of the laboratory is a 3D 
projection system with a powerwall measuring 5.5 
meters in length and 3.4 meters in height and a built-
in four-sided CAVE. For these, 11 stereo projectors 
produce a picture of 25 million pixels rich in intensity 
and contrast, suitable for daylight conditions. Real-
time visualization and a high-precision tracking 
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system allow users to immerse themselves in the 
virtual environment of life-size digital twins of urban 
areas and buildings. The big tracked space of this 
custom CAVE makes the IPLab suitable for 
communicating construction projects for the public 
and can host of up to 15 persons [8].  

A single user is tracked and is presented with the 
correct perspective in 3D space. This presents a 
limitation to collaborative immersive experiences in 
groups and novel technologies are developed towards 
multiviewer CAVE systems at the Fraunhofer IAO 
[9]. This would also enable simulation of multiuser 
AR applications in surrounding projection systems. 

A computer cluster of 11 PCs with 22 gaming 
GPUs is used for rendering up to 60 stereo images per 
second. These images are distributed to the 3D 
projectors using UniCAVE, a plugin that leverages the 
Unity game engine for non-head mounted virtual 
reality display systems [10]. This simplifies the 
process of adapting existing Unity projects for 
distributed visualization platforms and use modern 
gaming rendering technology in our CAVE, replacing 
complex workflows of custom outdated graphics 
engines used in the past.   

The virtual environment, used to manipulate VPS 
localization in our experiments, is that of a visual 
digital twin of the Center for Virtual Engineering 
(Zentrum für Virtuelles Engineering, ZVE). This 
photorealistic 3D model has resulted from adapting the 
Building Information Modelling (BIM) model of the 
ZVE (that was deployed to actually construct the 
building in the past) for real-time rendering and 
interactive applications and is used as a testbed in a 
variety of projects and as an example of productive 
reuse of BIM Models.  
 
 
3.2. Application Development and Testing 
 

The introduced testing method exploits the 
inability of VPS to distinguish between reality and 
virtuality. For this research and to showcase the 
manipulation of Google’s VPS using virtual 
environments, we developed two location-based 
mobile AR applications, one for indoor and one for 
outdoor experiments as is shown in Table 1. Both test 
applications are based on the Unity game engine and 
use Google’s ARCore and Geospatial Creator APIs 
[11]. Additionally, we conducted an experiment using 
a commercial product that uses VPS technology. 
 
 

Table 1. Experiments conducted to manipulate Google 
VPS in CAVE environments. 

 
Experiment API Location Application 

1. Geospatial 
Creator Outdoor Custom 

2. 
ARCore 
Cloud 

Anchor 
Indoor Custom 

3. 
Google 

Maps Live 
View 

Outdoor Commercial 

We deployed those applications on latest 
generation AR-enabled iOS devices and tested them in 
the physical and virtual locations respectively  
(Table 2.). Each application has a red sphere as virtual 
object that appears at specific locations. In both cases 
(indoors and outdoors) we were able to simulate the 
AR experience in our CAVE. In parallel we 
documented our method with screen captures of 
applications running on devices and stills with the user 
inside the CAVE. The physical locations were chosen 
based on distinct characteristics and a short walking 
distance from the CAVE.  
 
 

Table 2. AR devices used in experiments. 
 

Device Type LiDAR Experiment 

1. iPad Pro 6. gen yes 1 
2. iPhone 13 Pro yes 3 
3. iPhone 12 no 2 

 
 

Location based virtual objects are commonly 
referred as anchors, cloud anchors, spatial anchors, 
persistent anchors, etc., and are stored either at the 
infrastructure of the VPS provider (in our case Google 
Cloud) or locally on users’ devices.  
 
 
3.3. Manipulation of Google’s Geospatial Creator 
 

The chosen outdoor location is at the front entrance 
of the Center for Virtual Engineering (Zentrum für 
Virtuelles Engineering, ZVE) which has a distinct 
architecture and also hosts the Immersive Participation 
Lab with the CAVE. This location also has sufficient 
VPS coverage, a precondition for Google’s Geospatial 
Creator to function. VPS coverage is synonymous 
with Google Maps and Street view coverage. These 
two platforms provide the pre-existing database, i.e. 
the necessary data (terrain, images and 3D models of 
buildings, infrastructure or other landmarks) to 
compare against, during an AR-session and resolve the 
virtual objects (in our case a reflective red sphere with 
a diameter of 3 meters that floats 2 meters above 
ground) accordingly.  In the first part of the 
experiment the AR-application is launched at about  
20 meters distance of the chosen anchor points and 
after the localization process is completed, the virtual 
red sphere appears floating at the intended position in 
space. The localization process includes panning the 
AR device around in order to gather as much visual 
information about the environment as possible.  

In the second step we terminate the application and 
relaunch it, but this time in the CAVE that displays a 
photorealistic 3D environment around us. Although no 
GPS signal is available inside the building, the 
localization process concludes with success and the 
virtual red sphere appears on the screen of the 
handheld AR device at the intended position. The 
CAVE environment in this case is fully utilized as it 
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allows for more than 180° pan movement of the AR 
device, often necessary for a successful localization of 
the VPS. 

In Fig. 2, a side-by-side comparison of the physical 
and virtual location is shown. The left part is a 
screenshot of the AR application running on device 1 
at the physical location. The right part is a screenshot 
of the same AR application running on device 1 inside 
the CAVE.   
 
 

 
 

Fig. 2. Side by side comparison of outdoor experiment using 
Google Geospatial Creator. Left – device screen capture of 
resolved AR object in physical location. Right – device 
screen capture of resolved AR object in CAVE. 
 
 

In the upper part of both screenshots localization 
information is displayed, like geolocation and 
orientation, with according error thresholds. The 
bottom part displays instructions and status updates. A 
first look at this comparison reveals good match 
between the actual and the simulated AR pose 
estimation. The red sphere appears at approximate the 
same position in front of the ZVE building. For this to 
succeed the AR device has to be carefully placed in the 
virtual environment resembling the position and 
orientation of the AR device at the physical location, 
as shown in the right part of Fig. 3.  

 
 

 
 
Fig. 3. Experimental setup of user, AR device, tracking 
targets and CAVE projection of protorealistic 3D models. 
Left – indoor location using Google ARCore Cloud Anchors 
API. Right – outdoor location using Google Geospatial 
Creator. 

Any mismatch results on slightly different AR 
pose estimations and final rendering of the virtual 
object. A closer look reveals these differences in pose 
estimation: the simulated AR pose estimation (Fig 2, 
Right) places the object with an offset of a few meters 
and also makes it appear smaller. Also, luminance is 
not the same. To accurately measure the offset of 
simulated AR experiences in combination with VPS, 
broader research should be conducted by measuring 
tracking errors. 
 
 
3.3. Manipulation of Google’s ARCore Cloud 

Anchor API 
 

Google’s ARCore Cloud anchor API also uses a 
VPS to map and resolve virtual objects in indoor 
locations. This VPS technology allows ARCore to 
recognize and understand the environment more 
accurately by comparing the visual features of a 
physical space to a previously mapped area stored in 
the cloud. By doing this, ARCore can determine the 
position and orientation of a user's device with high 
accuracy within environments that have been 
previously mapped and stored in the cloud. The Cloud 
Anchors API extends ARCore's environmental 
understanding by allowing developers to anchor 
virtual content to specific points in the environment 
that persist across app sessions and can be shared 
across devices. The visual positioning service supports 
these capabilities by recognizing specific features of 
the indoor environment and using them as reference 
points. The difference between the Geospatial Creator 
API, that uses references from existing databases, and 
the Cloud anchor API is that, in the latter, the user is 
required to map the environment manually first before 
being able to store a spatial anchor in the cloud. This 
process during an AR session is called mapping and 
leverages all available sensors to create a 3D mesh 
with distinguishable visual features, in close proximity 
of the user. Google has also shared that it uses Neural 
Radiance Fields (NeRF) to reconstruct indoor 
environments [12] but it is unclear if NeRF are used in 
the AR Cloud Anchor API. It certainly would make 
sense to use this additional source of easily accessible 
information.  

The chosen indoor location to place a virtual object 
for this experiment is inside the ZVE building and at 
close proximity to the IPLab. Like the outdoor 
location, it is also rich on visual features that can be 
easily detected by the device sensors, to map the 3D 
space, and by the VPS find matches later. As can be 
seen in Fig.3 (Left), a white wall with several frames, 
text, doors on one side and a textured floor, provide 
enough reference points to anchor virtual objects in 
space and determine the AR Pose.    

A diffuse red sphere with a diameter of 1 meter, 
attached to the floor, is chosen as the virtual object that 
is supposed to resolve in the physical and virtual 
environments accordingly.  After the mapping process 
completes at the physical location and the cloud 
anchor is stored it can be successfully resolved, as 
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shown in Fig. 4 (Left). Restarting the application in the 
CAVE, that provides the virtual environment for our 
chosen indoor location, and after choosing to resolve 
the previously anchored red sphere with a specific id, 
the user is required to map his close proximity again. 
When enough reference points are found and the 
CAVE environment is matched to the physical space, 
the red sphere appears at the designated virtual 
location through the AR device as is shown in Fig.4 
(Center and Right). While Fig.4 (Left and Center) are 
screen captures of ARCore Cloud Anchor 
applications, the right Fig.4 (Right) and the Fig.3 
(Left) are photographs of the experimental setting in 
the CAVE, where also the projection wall edges are 
clearly visible.  
 
 

 
 
Fig. 4. Side by side comparison of indoor experiment using 
Google ARCore Cloud Anchor API. Left – Device Screen 
Capture of resolved AR object in physical location. Center 
– Device Screen Capture of resolved AR object in CAVE. 
Right – Experimental setup of AR device and tracking 
targets in CAVE.   
 
 
3.4. Manipulation of Google Maps Live View 
 

Live View is an AR feature of Google Maps that 
directs the user in which way to walk using arrows and 
directions overlaid on the real world through the 
phone's camera view. It is addressed to the average 
user of Google Maps with an ARCore compatible 
device [13]. Similar to the Geospatial Creator tool, 
Google leverages its data centers to process the spatial 
data and run queries in order to match the camera view 
against known 3d reconstructions and images of the 
built environment. This way the computational 
resources, required to complete the complex task of 
user localization based on pure visual data, are shifted 
away from the user’s device. This shift of 
computational resources from user devices to data 
centers enables immersive experiences like AR at 
urban scale. At the same time Google leverages user 
generated content to enhance its VPS. Every time Live 
View is activated the user shares a live video feed from 
their surroundings with Google. In combination with 
other geolocation and sensor data, this video feed is 
used to run queries against Street View, Maps and 
Google Earth databases.  

Live View can only be activated during a 
navigation session in Google Maps. First the user has 
to ask for directions towards a specific address and 
start the navigation guide. Then, if the user’s device is 
ARCore compatible and VPS coverage is sufficient at 
the current geolocation, Live View is available to use. 
The graphical user interface consists of textual and 
visual walking directions. The primary AR object of 
Live View is a set of white and blue 3D arrows 
attached on the streets or sidewalks and oriented 
towards the suggested walking direction. The AR Pose 
of this virtual objects is constantly updated as the user 
walks and his geolocation changes. Another virtual 
object is the red 3D pin, a symbol of the target address 
and final destination of the current navigation route. 

While it is possible to physically walk for a few 
meters in the CAVE, simulating a complete navigation 
with multiple nodes is not possible. The device can 
sense if a user is walking or not and does not update 
the remaining distance accordingly, even if the virtual 
environment of the CAVE is translated to a new 
location. Although the AR arrows adjust to the 
walking path, the distance to target is not updated 
accordingly. This means that Live View, in no time, 
relies purely on the VPS to determine walking distance 
and directions. 
 
 

 
 

Fig. 5. Side by side comparison of Google Maps Live View 
manipulation. Left – Device Screen Capture of resolved AR 
navigation objects in physical location. Center – Device 
Screen Capture of resolved AR navigation objects in CAVE. 
Right – Experimental setup of AR device and tracking 
targets in CAVE.  
 
 

For our third experiment we chose a short 
navigation route of 40 meters, starting from the 
sidewalk of Nobelstreet 12 and ending at the ZVE 
building, which can be selected as the destination in 
Google Maps. First, we setup the navigation at the 
physical location, launch Live View, capture the 
surroundings and wait for the VPS to resolve the 
virtual objects in the AR view of the device. This 
intended AR view is show in Fig. 5 (Left). We cancel 
this navigation, move to the ZVE building, in the 
CAVE virtual environment, where no GPS signal is 
available and setup a similar 30 meters long route. 
Start location is the sidewalk of Nobelstreet and the 
ZVE building is the destination. A screenshot of this 
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navigation route is shown in Fig. 6 (Left). The virtual 
environment of the CAVE has been adjusted to match 
the real start location outside of the ZVE building, this 
is shown in Fig. 6. (Right). This way, when Live View 
is activated and the VPS matches the CAVE virtual 
environment with an actual location from its databases 
the AR pose of the virtual navigation objects is 
resolved correctly oriented and scaled as is shown in 
Fig. 5 (Center) and Fig. 5 (Right). Also, the walking 
distance of 30 to 40 meters is approximately matched 
in our AR simulation environment.  
 
 

 
 

Fig. 6. Experimental setup of Google Maps Live View 
manipulation in CAVE. Left – Device Screen Capture of 
navigation route. Right – AR user getting navigation 
directions in virtual environment.  
 
 
4. Conclusions and Future Work 
 

Objective of this work is to share with scientist and 
developer communities findings about the 
opportunities and pitfalls of VPS based applications. 
On one side they offer a significant contribution to AR 
experiences in general and tools like the Geospatial 
Creator solve many developer problems by 
streamlining software architectures and digital asset 
management. On the other side they can be easily 
manipulated and should only be relied upon in 
combination with other sensor data, as we found out is 
the case in Live View, during our third experiment, 
where the walking distance failed to update during the 
CAVE simulation. 

This work shows that simulation of AR in a CAVE 
virtual environment reduces overhead of the software 
development process for urban settings and buildings. 
If a photorealistic 3D reconstruction is available, then 
a first prototype of the AR application can be 
developed without even traveling to the remote site. 
This has big implications in projects where multiple 
physical laboratories and campus locations are 
required to be reconstructed and made AR-ready, in 
human-centered metaverse-like virtual worlds like in 
the Instance Project of Fraunhofer IAO [14]. 

In absence of CAVE facilities, the proposed AR 
test field can also be implemented using smaller VR 

projection areas, like a powerwall, or LED screens, 
making it attractive for more developers in smaller 
laboratories and studios. But tracking the AR device 
in space, using targets or other techniques, to calculate 
the correct 3D perspective for the AR device in the 
virtual environment is essentially for the simulation to 
succeed, so a tracking system is needed. This setup, 
with smaller projection areas, works but makes the 
localization process more difficult and additional time 
and runs are needed to resolve the AR pose, because 
pan movement of the device, required to map the 
surroundings, is limited to the available projection or 
screen area. Also, human life scale of the 3D models 
in a restricted projection area is difficult to achieve, 
whereas in the CAVE we render 3D reconstructions of 
physical locations in 1:1 scale by default.   

When simulating AR applications within our 
CAVE, luminance and lighting conditions of virtual 
objects in the AR view of the device cannot be reliably 
rendered. Modern lighting estimation techniques can 
approximately provide ambient lighting information 
of physical environments in real-time, and use that 
information to correctly illuminate virtual objects in 
AR [15]. The artificially lit CAVE space fails to 
provide accurate luminance information and so 
photorealistic material properties of virtual objects 
should only be tested in the actual AR site and not in 
the simulator. We found out that the projector (or 
screen) resolution plays a vital role in correct 
registration of AR. Higher display or projection 
resolutions are also better suited for marker-based AR. 

As is the case when the CAVE is used for 
immersive stereo visualizations a major breaker of 
immersion for VR users are the clearly visible 
projection wall edges [16]. This does not seem to be a 
hurdle for the VPS in order to localize the AR user and 
resolve the virtual objects. Although it sometimes 
helps the AR application if a virtual edge is aligned 
with the virtual one as is attempted in Fig. 3 (Left). 
The detection of these clearly visible CAVE edges can 
be a fail-safe mechanism for future updates of VPS. 
This way artificial environments can be distinguished 
from real-ones and classified accordingly.  

On the other hand, a VPS designed from the 
ground up to be used in CAVE environments would 
greatly benefit the AR simulation and the scaling of 
the AR software development process. Decoupling the 
VPS from other localization and tracking algorithms 
during an AR-session will add more control to the 
simulator and enable testing of applications where 
locomotion is required. It will reduce sensor confusion 
that is introduced when some sensor data suggest an 
indoor location with no GPS signal and the camera 
“sees” an outdoor public square at street level for 
example. Using immersive environments in 
combination with photorealistic synthetic data, like a 
visual digital twin, enables deep learning approaches 
not previously possible [17].  

Sharing our geolocation or “dropping a pin” to 
peers is a common practice in everyday life. In 
forensics a user’s approximate geolocation is usually 
determined using triangulation of cell tower 
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connection records or GPS data extracted from devices 
or applications that use GPS for features such as 
navigation or location-based AR experiences like in 
our case. As our research shows, VPS can be hacked, 
be feeding it false information and manipulated into 
producing results intended for a remote physical 
location. This vulnerability can be misused and 
renders localization information, coming purely from 
VPS, unfit as forensic evidence. In autonomous 
navigation VPS have been research characterized as 
unreliable in a safety for life context. because they lack 
mature integrity frameworks [18]. Future research 
should determine if AR devices running applications 
that use VPS also share a resolved localization, in 
absence of GPS data, wrongfully as reliable 
geoinformation with third party applications that help 
users locate their lost devices for example or social 
networks features like location sharing and tagging.  
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Summary: A 1 MW steam turbine was designed and built to generate electricity from the waste steam of a chemical factory 
in Kedzierzyn Kozle, Poland. The dynamic of the turbine was analysed, including the vibration of the turbine casing, rotor 
blades, and bearings using accelerometers at the two bearing casings and two generator bearings. The two displacement sensors 
in each turbine bearing were used to analyse relative vertical and horizontal vibrations in the casing and rotor. A tip-timing 
system measured the vibrations of the third-stage bladed disc. During the first run-up, resonance appeared and the turbine was 
turned off by the control system. This paper analyzes the cause of this resonance using accelerometers on the turbine casing and bearings and 
inductive sensors for tip-timing blade vibrations. 
 
Keywords: Signal processing, Tip-timing, Inductive sensors and accelerometers. 
 
 
1. Introduction 

 
A 1 MW steam turbine was designed and built to 

generate electricity from the waste steam of a chemical 
factory in Kedzierzyn Kozle, Poland. (Fig. 1). The 
dynamic of the turbine was analysed. The vibration of 
the turbine casing, rotor blades, and bearing were 
measured using accelerometers and tip-timing system. 
During the first run-up, resonance appeared and the 
control system turned off the turbine. 

 

 
 

Fig. 1. Steam turbine in the chemical factory. 
 

Measurements of steam turbine last stage LP rotor 
blade vibrations were presented by Rao and Dutta [1], 
using a noise sensor mounted in the casing to find the 
excessive blade vibration caused by flutter in high 
condenser pressure. 

Donato et al. [2] used the tip-timing method with 
an optical sensor mounted in the casing to find blade 
vibration in an LP last stage. 

The experimental and numerical results of the  
last-stage low-pressure rotor blade flutter were 
presented by Sanvito, et al. [3]. The dynamic behavior 
of blades was numerically investigated, and the 
grouping of blades in packs was optimized to avoid 
resonances. This led to the design of new blades, which 
were mounted in the turbine, and the measured results 
showed an improvement in the turbine’s dynamic 
behavior. 

Prochazka and Vanek [4] used tip-timing to show 
an increase in the vibration amplitude of a cracked 
blade in a 1000 MW turbine LP last stage. 

Przysowa [5] used tip timing to analyze 
synchronous and nonsynchronous vibrations of a 
steam turbine LP last stage rotor blade. This showed 
how the pressure in the condenser influences rotor 
blade vibration in a nominal state. 

Blade multi-modes using the non-uniform Fourier 
transform were identified by Kharyton and Bladh [6]. 
A sparse reconstruction of the blade tip-timing signal 
for multi-mode blade vibration monitoring was 
proposed by Lin et al. [7]. 

The application of the sparse representation 
theorem to find multimode blade vibration frequencies 
with uncertainty reduction was presented by Pan  
et al. [8]. 

The nonlinear least-squares Levenberg-Marquardt 
method used in paper [9] determines asynchronous 
multimode blade vibration components, where the 
blade can vibrate simultaneously with several modes 
and frequencies. 

Paper [10] presented the method of finding  
multi-modes of synchronous and nonsynchronous 
blade vibrations from the tip-timing velocity time of 
arrival using the Least Squares Technique. This 
method requires only two sensors in the casing, and a 
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once-per-revolution sensor for synchronous vibrations 
but not for asynchronous vibrations. 
 
 
2. Measuring System of Dynamic Vibration  
    of 1 MW Steam Turbine 
 

Two measuring systems were designed  
and produced. 

The first used (vertical) accelerometers in the two 
bearing casings, horizontal and vertical ones in the 
turbine casing above the third stage, and two ones in 
the generator bearing casing. 

The measurement system writes data as unsigned 
short int data (16 bits). To convert from digital values 
to physical quantities, the data from the accelerometer 
had to be decoded. The read values from the 
measurement system were processed into acceleration 
values. It was necessary to take into account the 
sensitivity settings of the accelerometer. To decode 
digital values into acceleration, the following formula 
was used: 

 
 𝑎𝑎 =  𝑟𝑟−𝑜𝑜

𝑠𝑠
,  

 
where r is the acceleration value read from the 
measurements, o is the measured displacement values, 
s is the sensitivity of the accelerometer, i.e. conversion 
of digital values to acceleration values. 

After applying the above formula and adjusting the 
displacement and sensitivity to the specific sensor 
parameters, the sensor acceleration data was obtained. 
Thus, the data was transformed from digital format to 
physical acceleration values, enabling further analysis 
and interpretation of the measurement results. 

The blade displacements were calculated based on 
the measured times of blade arrival, using blade tip 
sensors and a once-per-revolution sensor. To find the 
harmonics of multimode rotor blade vibrations using 
the tip-timing method, the amplitudes may be assumed 
as follows: 

 
 A(t) = ∑ 𝐴𝐴𝑖𝑖 sin (2πf𝑖𝑖  +  𝜑𝜑𝑖𝑖)  + 0�𝑛𝑛

𝑖𝑖=1 , (1) 
 

where A(t) refers to the known values of blade 
displacements in time, Ai is the amplitude for i-th 
harmonic, fi is the frequency of the blade vibrations for 
i-th harmonics, and t is the known time for which the 
displacement A(t) was calculated, φi is the phase shift 
for i-th harmonic, 0�  is the “0”- noise level of the blade 
vibrations. 

Equation (1) adequately fits the measured data in 
the nonlinear least-squares method to obtain the 
amplitudes Ai, frequencies fi and phases φi of i-th blade 
mode vibrations. 

The nonlinear least-squares Levenberg-Marquardt 
algorithm (L-M) is used for the fitting [9]. 

This iterative algorithm is based on successive 
approximation of the analyzed parameters (i.e. 
frequency, amplitude and phase): 

 

  𝛽𝛽𝑗𝑗𝑘𝑘+1  =  𝛽𝛽𝑗𝑗𝑘𝑘 + ∆𝛽𝛽𝑗𝑗, (2) 
 

where 𝛽𝛽𝑗𝑗𝑘𝑘 is a parameter value of the blade mode 
(frequencies (j = 1) or amplitudes (j = 2) or phases  
(j = 3)), the superscript k is the iteration step, and the 
difference Δβj is called the shift value. At each 
iteration, the model is linearized using the  
Taylor series: 
 

 
𝐹𝐹(𝑥𝑥𝑖𝑖 ,𝜷𝜷)  =  𝐹𝐹𝑘𝑘(𝑥𝑥𝑖𝑖 ,𝜷𝜷) + ∑ 𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖,𝜷𝜷)

𝜕𝜕𝛽𝛽𝑗𝑗
�𝛽𝛽𝑗𝑗 −𝑗𝑗

−𝛽𝛽𝑗𝑗𝑘𝑘�  =  𝐹𝐹𝑘𝑘(𝑥𝑥𝑖𝑖 ,𝜷𝜷) + ∑ 𝐽𝐽𝑖𝑖𝑖𝑖∆𝛽𝛽𝑗𝑗𝑗𝑗 , 
(3) 

 
where 𝜷𝜷 is a vector of the parameters (frequency, 
amplitude and phase). 

Jacobian J is a function of the constant (in this case, 
it is 0� from Equations (1)–(4)), the independent 
variable (time) (xi), and the parameters, and therefore 
changes from iteration to iteration. 

The fitting error for each measurement is 
 

  𝑟𝑟𝑖𝑖  =  𝑦𝑦𝑖𝑖 − 𝐹𝐹𝑗𝑗(𝑥𝑥𝑖𝑖 ,𝜷𝜷) − 
−∑ 𝐽𝐽𝑖𝑖𝑖𝑖∆𝛽𝛽𝑗𝑗  =  ∆𝑦𝑦𝑖𝑖 − ∑ 𝐽𝐽𝑖𝑖𝑖𝑖∆𝛽𝛽𝑗𝑗𝑚𝑚

𝑗𝑗 = 1
𝑚𝑚
𝑗𝑗 = 1 , (4) 

 
where yi is the measured value (blade displacement),  
i = 1, …, n, n is the number of measurement points, F 
is a function of the model (in this case, right side of 
Equations (1), m is connected with the number of blade 
mode components m = 3 for one harmonic, 6 for two 
harmonics, etc., 𝜷𝜷 is a vector of the parameters 
(frequency, amplitude and phase. 

Jacobian J is a function of the constant (in this case, 
it is 0� from Equations (1)–(4)), the independent 
variable (time) (xi), and the parameters, and therefore 
changes from iteration to iteration. 

The sum of squared fitting errors is minimized 
 

 𝑆𝑆 =  ∑ 𝑟𝑟𝑖𝑖2𝑛𝑛
𝑖𝑖   (5) 

 
The minimum value of S occurs when the gradient 

is zero 
 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽𝑗𝑗

 =  2∑ 𝑟𝑟𝑖𝑖
𝜕𝜕𝑟𝑟𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗

𝑛𝑛
𝑖𝑖  =  0 (𝑗𝑗 =  1, … ,𝑚𝑚)  (6) 

 
The number of parameters m, means that there are 

m gradient equations, βj   is approximated in each step 
using (11). Next, Jacobian J is linearized: 
 

  𝐽𝐽𝑖𝑖𝑖𝑖  =  − 𝜕𝜕𝑟𝑟𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗

  (7) 

 
Substituting (4) and (7) into (6): 

 
 −2∑ 𝐽𝐽𝑖𝑖𝑖𝑖(∆𝑦𝑦𝑖𝑖 − ∑ 𝐽𝐽𝑖𝑖𝑖𝑖∆𝛽𝛽𝑘𝑘𝑚𝑚

𝑘𝑘 = 1 )  =  0𝑛𝑛
𝑖𝑖 = 1 , (8) 

 
where n is the number of measurement points. 

Equation (8) can be written as the m of linear 
equations: 
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∑ ∑ 𝐽𝐽𝑖𝑖𝑖𝑖𝐽𝐽𝑖𝑖𝑖𝑖∆𝛽𝛽𝑘𝑘  =  ∑ 𝐽𝐽𝑖𝑖𝑖𝑖∆𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖 = 1  (𝑗𝑗 =𝑚𝑚
𝑘𝑘 = 1

𝑛𝑛
𝑖𝑖 = 1

=  1, … ,𝑚𝑚)  (9) 

 
Equation (9) is analogous to the linear least squares 

fitting algorithm and can be easily solved. 
The nonlinear least-squares Levenberg–Marquardt 

algorithm requires a gradient of Equations (1) or (2) or 
(3) or (4) (Jacobian J in the linearized model). For 
Equation (1), the first component can be calculated by 
obtaining derivatives concerning each parameter: 

 
 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝐴𝐴 sin(2𝜋𝜋𝜋𝜋𝜋𝜋 + 𝜑𝜑))  =  sin(2𝜋𝜋𝜋𝜋𝜋𝜋 + 𝜑𝜑)  (10) 

 
 
3. Experimental Results 
 

To analyse the dynamic vibration of the turbine, 
two accelerometers were placed vertically in the two 
turbine-bearing casings and two generator-bearing 
casings. Two displacement sensors were placed in each 
turbine bearing to analyse the relative vertical and 
horizontal vibrations of the casing and rotor. 

Fig. 2 presents the relative vibration of turbine 
bearing 1 in x direction (dark blue) and y direction 
(dark green), the relative vibration of turbine bearing 2 
in x direction (red) and y direction (light blue), the 
absolute vibration of turbine bearing 1 (purple), 
bearing 2 (light blue), generator bearing 1 (dark violet), 
generator bearing 2 (orange). The rotation speed is 
black. It can be seen that, due to the extensive absolute 
vibration of the second turbine bearing at 2840 rpm, 
the control system turned the turbine off. The variable 
speed zig-zag up to 2840 rpm was caused by the  
speed regulator. 

 

 
 

Fig. 2. Dynamic analysis of 1MW steam turbine. 
 
The absolute vibration of bearing 2 was higher than 

the relative vibration of the casing and rotor, which 
means that the casing of bearing 2 or the frame was 

excessively vibrating. The red relative vibration peaks 
of turbine bearing 2 (Fig. 2) resulted from 
measurement errors. 

A calculation of critical speed was carried out for 
the rotor. The Campbell diagram shows that there are 
no critical speeds up to 3000 rpm for 1EO. Another 
two accelerometers were installed in the casing in the 
x and y direction above the third bladed disc. Three 
inductive sensors were installed above the third bladed 
disc to measure the bladed disc vibration using the  
tip-timing method [3, 4]. It was found from the 
accelerometer measurements that a frequency of 51 Hz 
was independent of rotation speed. The tip timing 
measurements of the bladed disc show a very small 
level of vibration. 

In the first step, the stiffness of bearing 2 was 
increased, but the turbine was turned off at 2940 rpm. 

The vibrations of the frame were analysed 
numerically. It was found to have a natural vibration of 
51 Hz. So, the frame was supported under the second 
bearing. The turbine reached a speed of  
3000 rpm. 

The Campbell diagram for the steam turbine rotor 
(Fig. 3) shows that the critical speed for 1EO is only 
74 rad/s (706 rpm). 

 

 
 

Fig. 3. Campbell diagram of 1 MW steam turbine rotor. 
 
 
4. Conclusions 
 

The dynamic of a 1MW steam turbine during  
run-up was analyzed. At 2840 rpm, the turbine was 
turned off by the control system because of the 
extensive absolute vibrations of the second turbine 
bearing. The accelerometer measurements show that 
the 51 Hz frequency was independent of rotation 
speed. The tip timing measurements of the bladed disc 
show a very small level of bladed disc vibration. 

In the first step, the stiffness of bearing 2 was 
increased, but the turbine was turned off at 2940 rpm. 

The vibration of the frame was analysed 
numerically. It was found to have a natural vibration of 
51 Hz. Therefore, the frame was supported under the 
second bearing. The turbine reached a speed of  
3000 rpm. 
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Summary: The purpose of 3D object detection is to predict a set of boundary boxes and category labels for each interested 
object in 3D space, serving as a fundamental task for realizing large-scale automated driving. In recent years, 3D object 
detection in the context of autonomous driving has become a hot research area in both academia and industry. However, due 
to limitations in datasets, underutilization of data, and low detection accuracy in multi-sensor fusion, achieving real-time and 
efficient 3D object detection is not an easy task. In this paper, we provide a review of the field of 3D object detection. This 
paper first provides a summary of several commonly used datasets for autonomous driving 3D object detection. Secondly, we 
categorize 3D object detection algorithms according to the type of data sources: LiDAR point cloud-based 3D object detection 
algorithms, camera image-based 3D object detection algorithms, and LiDAR-camera fusion-based 3D object detection 
algorithms. We conduct a deep analysis of each type of methods. Finally, we present potential opportunities and challenges 
for autonomous driving 3D object detection in the areas of data processing, feature extraction strategies, multi-sensor fusion, 
and dataset distribution. In conclusion, we hope that this paper can inspire further technical reflections among researchers. 
 
Keywords: Autonomous driving, Multi-sensor fusion, 3D object detection, Deep learning, Computer vision. 
 
 
1. Introduction 
 

Autonomous driving 3D object detection 
algorithms refer to the use of 3D sensors (such as 
LiDAR) and 2D sensors (such as cameras) to acquire 
3D point cloud and 2D image information in road 
scenes, thereby achieving automatic detection and 
recognition of various targets (such as vehicles, 
pedestrians, traffic signs, etc.) in road scenes. 

In recent years, with the rapid development of 
autonomous driving technology, autonomous driving 
3D object detection algorithms have gradually become 
an indispensable part of autonomous driving 
technology. Many excellent algorithms based on deep 
learning have emerged, such as the PointNet [1] series 
of algorithms based on point clouds and the Faster  
R-CNN [2] algorithm based on images. These 
algorithms have achieved significant detection results 
in their respective datasets. However, autonomous 
driving 3D object detection technology still faces some 
challenges, such as low detection accuracy for small 
targets, slow processing speed of point cloud data, and 
heavy dependence on the quantity and quality of 
datasets. These issues require further research and 
exploration. In addition, the application field of 
autonomous driving 3D object detection technology is 
also constantly expanding, extending from 
autonomous driving vehicles to intelligent 
transportation, intelligent manufacturing, intelligent 
security, and other fields, providing infinite 
possibilities for the realization of intelligent  
cities and life. 

In summary, automatic driving 3D object detection 
technology is one of the core technologies for realizing 
autonomous driving technology, with significant 

application value and research significance. This paper 
will review the current research status and future 
development directions in this field, aiming to provide 
inspiration and ideas for relevant researchers and 
developers. 
 
 
2. Datasets 
 

Autonomous driving perception involves multiple 
datasets [3-5], but only three datasets are widely used, 
namely KITTI [6], Waymo [7], and nuScenes [8]. 
Here, we summarize the detailed characteristics of 
these datasets and list them in Table 1. 

The KITTI [6] dataset is one of the widely used 
datasets in the field of autonomous driving, applicable 
for 2D, 3D, and bird's eye view detection tasks. 
Equipped with four high-resolution video cameras, a 
Velodyne LiDAR scanner, and a state-of-the-art 
localization system, the KITTI dataset collected a total 
of 7481 training images and 7518 test images, along 
with the corresponding point clouds. Within the 
dataset, only three types of objects (cars, pedestrians, 
and cyclists) are annotated, with over 200k 3D objects 
categorized by difficulty levels: easy, moderate, and 
hard. The common evaluation metric is the Average 
Precision (AP), used for comparing the performance of 
KITTI object detection tasks. Additionally, the 
Average Orientation Similarity (AOS) is utilized to 
evaluate the performance of joint detection of objects 
and estimation of their 3D directions. 

Waymo [7] is the most widely used public dataset 
for benchmarking autonomous driving, collected using 
5 LiDAR sensors and 5 high-resolution pinhole 
cameras. Specifically, Waymo comprises 798 training 
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scenes, 202 validation scenes, and 150 test scenes, 
each lasting 20 seconds, annotated with vehicles, 
cyclists, and pedestrians. For evaluating 3D object 
detection tasks, Waymo provides four metrics: AP/L1, 
APH/L1, AP/L2, and APH/L2. Among these, AP and 

APH represent two different performance 
measurement methods, while L1 and L2 contain 
targets with different levels of difficulty. Within these 
metrics, APH is calculated similarly to AP, but 
weighted to take into account directional accuracy. 

 
 

Table 1. Survey of Commonly Used Open Dataset and Benchmarks. 
 

Dataset KITTI [6] Waymo [7] NuScenes [8] 
Creation Year 2012 2019 2019 

Used Radar 1 Velodyne LiDAR scanner 5 LiDAR sensors 1 rotating 32-beam 
LiDAR sensor 

Used Cameras 4 high-resolution video 
cameras 

5 high-resolution 
pinhole cameras 6 RGB cameras 

Annotated Radar Frames 15K 230K 40K 
Annotated 3D Object Boxes 80K 12M 1.4M 
Annotated 2D Object Boxes 80K 9.9M - 

Traffic Conditions Urban, suburban, highway Urban, suburban Urban, suburban 

Task Scenarios 2D, 3D, and bird's eye view 
object detection tasks 

Object detection and 
tracking 

Object detection, 
semantic segmentation 

 
 

NuScenes [8] is an open dataset consisting of  
1000 driving scenes, divided into 700 for training,  
150 for validation, and 150 for testing. The dataset is 
equipped with cameras, LiDAR, and radar sensors, 
with annotations for 23 object categories in each key 
frame, including various types of vehicles, pedestrians, 
and other objects. For performance evaluation, 
NuScenes [8] utilizes AP and TP as metrics. 

 
 

3. 3D Object Detection Methods Based  
    on LiDAR 
 

Point cloud data obtained by LiDAR is crucial for 
autonomous driving. Point cloud data is a collection of 
three-dimensional coordinates obtained by LiDAR 
devices through scanning the surrounding 
environment. These points can provide precise 
information about the distance, position, and shape of 
objects around the vehicle. 3D object detection 
methods that use only LiDAR point clouds as input 
data can be divided into Voxel-based methods and 
Point-based methods, as shown in Fig. 1. 

 

 
 

Fig. 1 Comparison of architectures for object detection 
using point-based and voxel-based methods: (a) Point-based 

method; (b) Voxel-based method. 
 
The basic idea of voxel-based methods [9-13] is to 

partition the point cloud space into small voxels and 
then perform feature extraction and object detection 
within each voxel. Typically, these methods can be 

summarized into the following steps: (1) Voxelization: 
Partitioning the point cloud into a set of equally sized 
three-dimensional voxels. The voxelization process 
can utilize regular grids or adaptive methods to 
maintain appropriate resolution differences between 
different regions of the point cloud. (2) Feature 
extraction: Within each voxel, some feature extraction 
methods are used to obtain the surface features of the 
voxels, such as point coordinates, colors, normals, 
density, etc. (3) Object detection: Within the voxels 
processed for feature extraction, utilizing object 
detection algorithms to identify objects present within 
the voxels and predict attributes such as position, size, 
orientation, etc. (4) Post-processing: Projecting the 
detected object bounding boxes back into the point 
cloud space and performing non-maximum 
suppression (NMS) to eliminate redundant  
detection results. 

Voxel-based methods typically can handle  
large-scale point cloud data and are easy to compute in 
parallel. However, due to limitations in voxel size and 
quantity, they may lose some spatial information and 
struggle to handle complex scenes and shapes. 

The basic concept of point-based methods [14-16] 
is to directly process raw point cloud data without any 
preprocessing. Typically, these methods can be 
summarized into the following steps: (1) Point cloud 
feature extraction: Extracting features from each point 
in the point cloud. Usually, the initial features of the 
point cloud can be represented by coordinates, 
normals, colors, etc. When extracting features point by 
point, deep learning-based methods such as PointNet 
[1], PointNet++ [15], PointCNN [16], etc., can be used 
to extract local and global features. (2) Point cloud 
sampling: Point cloud data is often very dense, 
containing some redundant data. Therefore, it is 
necessary to sample the point cloud. Sampling 
methods can utilize random sampling or probability 
distribution-based sampling. After sampling, the 
number of points in the point cloud is usually 
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significantly reduced, thereby reducing computation 
and storage costs. (3) Object detection: Utilizing object 
detection algorithms to extract features of objects from 
the point cloud after feature extraction and sampling, 
and predicting attributes such as position, size, and 
orientation of the objects. Object detection algorithms 
typically employ 3D convolutional neural networks 
(3D CNN) or point-wise methods to achieve this, such 
as VoxelNet [17], SECOND [18], PointRCNN [19], 
etc. (4) Post-processing: Projecting the detected object 
bounding boxes back into the original point cloud 
space and performing non-maximum suppression 
(NMS) to eliminate redundant detection results. 

Point-based methods can effectively preserve the 
spatial information of point clouds while reducing 
information loss during voxelization. However, due to 
the sparsity and noise of point clouds, they may face 
challenges such as high computational complexity and 
low real-time performance when dealing with large-
scale point cloud data. Therefore, researchers are 
continuously exploring new 3D point cloud object 
detection methods to improve detection accuracy  
and efficiency. 
 
 
4. 3D Object Detection Methods Based  
    on Images 
 

In the field of autonomous driving, early 3D object 
detection tasks were largely influenced by 2D 
detection algorithms, most of which were based on 
predicting 3D bounding boxes from 2D bounding 
boxes. In recent years, with the emergence of datasets 
such as KITTI, Waymo, and nuScenes, rapid 
development has been observed in single-camera  
[13, 20-22] and stereo-camera-based [23-25] 3D object 
detection algorithms. Common single-camera 3D 
object detection methods include the following: (1) 2D 
Detection with Depth Estimation: Initially, 2D object 
detection algorithms (e.g., Faster R-CNN [2], YOLO 
[25], etc.) are employed to detect objects in images and 
estimate their 2D bounding boxes. Then, depth 
estimation algorithms (e.g., those based on monocular 
image depth estimation) are used to estimate the 
distance to the objects, thus obtaining their 3D 
positions. (2) Deep Learning Approaches: In recent 
years, with the advent of point cloud datasets and 
improved computational power, deep learning-based 
single-camera 3D object detection methods have also 
seen significant advancement. For example, neural 
networks based on deep learning can be used to 
directly extract the 3D positions of objects from 2D 
images. These methods typically require large amounts 
of labeled data for training but often achieve higher 
detection accuracy. DETR3D [26] projected learnable 
3D queries into 2D images, then sampled 
corresponding features, thus achieving end-to-end 3D 
object detection. 

3D object detection methods based on stereo vision 
utilize images from left and right cameras. By 
calculating the disparity between the two cameras, 
depth information of the objects can be obtained. 

Common stereo-based 3D object detection methods 
include the following: (1) Traditional Computer 
Vision-Based Stereo 3D Object Detection: Early 
research on stereo 3D object detection relied mainly on 
traditional computer vision methods, such as disparity 
calculation and stereo image registration. These 
methods typically involve manual feature extraction, 
matching, and then depth computation of the objects. 
(2) Deep Learning-Based Stereo 3D Object Detection: 
In recent years, deep learning-based stereo 3D object 
detection methods have emerged gradually, often 
utilizing technologies like Convolutional Neural 
Networks (CNNs) to learn features from stereo images 
for object detection and depth estimation. For instance, 
an end-to-end CNN can be employed, taking stereo 
image pairs as input and producing output for object 
positions and depth information. (3) Optical  
Flow-Based Stereo 3D Object Detection: Another 
common stereo 3D object detection method is based on 
optical flow calculation. By computing the motion 
relationship between pixels in the left and right images, 
depth information within the images can be derived. 
These methods usually involve registration of images 
across frames and utilize motion patterns between 
pixels to calculate depth information. 

Compared to monocular 3D object detection, 
stereo 3D object detection methods can acquire more 
precise depth information of objects. However, they 
require complex preprocessing such as stereo image 
calibration and have high hardware requirements, 
necessitating trade-offs in practical applications. 

 
 

5. 3D Object Detection Methods Based  
    on Fusion of LiDAR and Images 
 

Since data collected by LiDAR and cameras 
usually contain complementary information, many 
algorithms for data fusion of these two sensors have 
emerged in the field of 3D object detection for 
autonomous driving in recent years. These algorithms 
can be categorized into three types based on fusion 
mechanism: Early fusion, Late fusion, Deep fusion, 
and Interactive fusion, as illustrated in Fig. 2. 

Early fusion is a fusion mechanism that directly 
combines LiDAR and camera data at either the data or 
feature level, resulting in a larger tensor for processing. 
In Paper [27], an approach based on an end-to-end 
deep neural network was proposed. This approach 
involves inputting both types of data into a shared 
convolutional neural network to extract features, 
followed by concatenating them and feeding them 
directly into a fully connected layer for classification. 
Paper [28] utilized early fusion of RGB images and 
depth images for object recognition. Furthermore, 
Paper [29] integrated LiDAR and camera data for 3D 
object detection and tracking in dynamic 
environments. 

Late fusion involves merging results from different 
data branches. For instance, LiDAR and camera data 
are separately input into their respective networks for 
processing, and the results from both networks are 
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merged in the end. Paper [30] utilized images captured 
by stereo cameras for object detection, improving 
detection accuracy by fusing information from two 
images. Paper [31] input images and point clouds into 
two separate networks and fused the outputs of both 
networks, achieving high-precision autonomous 
driving object detection. Paper [32] proposed a method 
by separately inputting LiDAR and camera data into 

two networks, then merging the outputs of both 
networks, yielding satisfactory detection results. Paper 
[33] performed feature fusion separately for point 
cloud and image data after feature extraction, obtaining 
two different feature vectors. These vectors were then 
concatenated as the final fusion feature for object 
detection. 

 
 

Images LiDAR Points

Semantic
Sementation

Fusion

Fusion LiDAR Points

(a) Early-Fusion (b) Late-Fusion

3D Object Proposal

3D Object 
Dection

2D Object 
Dection

3D Voxel 
Features

2D Image 
Features

Fusion

(c) Deep-Fusion

Pseudo points

Images LiDAR Points Images LiDAR Points

2D Image 
Features

Fusion

(d) Interactive-Fusion

Images LiDAR Points

3D Object 
Dection

 
 

Fig. 2. Comparison of different LiDAR-Camera fusion methods: (a) Early-Fusion method fuses two modalities of data  
at the data level; (b) Late-Fusion method fuses two modalities of data at the result level; (c) Deep-Fusion method fuses two 

modalities of data at the feature level. (d) Interactive-Fusion method fuses two modalities of data at different level. 
 
 

Deep fusion is a sensor fusion mechanism that 
integrates deep learning, performing multi-layer 
feature fusion of sensor data through multiple layers of 
deep neural networks to acquire richer feature 
representations. Compared to early fusion and late 
fusion, deep fusion can better integrate the 
complementarity of sensor information and high-level 
semantic features, thereby possessing superior 
representational capability and robustness. 
TransFusion [34] employs Transformer models to 
encode and fuse point cloud and image data, ultimately 
generating 3D bounding boxes and confidence scores 
for each object. 4D-Net [35] utilizes 3D convolutional 
neural networks (CNN) and 2D CNN for feature 
extraction from point cloud and image data 
respectively, then fuses the features of both networks 
for 3D object detection. BevFusion [36] employs two 
separate networks to extract features from point clouds 
and images respectively. These features are then fused 
together using a convolutional network, and finally, a 
detection method similar to the DETR [37] model is 
applied for 3D object detection. 

Interactive Fusion is a fusion mechanism that 
integrates different data branches at both the result and 
feature levels. Inspired by DETR [37], we can extract 
features from the data and transform them into Object 
Queries containing object information, which are then 
fused with the features of another data branch. Such 
methods typically exhibit optimal fusion effects. In 
DeepFusion [38], two different networks are utilized to 

extract features from point clouds and images 
respectively, generating Object Queries. 
Subsequently, the Object Query from the point cloud 
is fused with the image features, followed by the fusion 
of the Object Query from the image with the point 
cloud features. Finally, convolutional networks are 
employed to generate 3D bounding boxes and 
confidence scores for each object. 

 
 

6. Conclusions 
 

In autonomous driving technology, 3D object 
detection algorithms play a crucial role. This paper 
categorizes datasets and existing 3D object detection 
algorithms in autonomous driving. Based on data 
sources, 3D object detection methods can be classified 
into those based on LiDAR, those based on cameras, 
and those based on the fusion of LiDAR and cameras. 
Each method has its own advantages and 
disadvantages, with some focusing more on improving 
detection accuracy while others prioritize real-time 
performance and low power consumption. With the 
continuous development of autonomous driving 
technology, future research directions include better 
data augmentation techniques, optimization and 
improvement of algorithms, and the fusion of 3D 
object detection algorithms with other sensors to 
achieve more efficient and accurate autonomous 
driving systems. 
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Summary: The accurate forecasting of agricultural commodity prices is essential for ensuring food security by improved 
planting planning. Traditional econometric models have been the backbone of such forecasting efforts; however, the advent of 
machine learning (ML) offers promising enhancements in predictive accuracy and adaptability to market dynamics. This paper 
proposes a comprehensive methodological approach to applying ML algorithms for the forecasting of agricultural commodity 
prices. This methodology encompasses data preprocessing, feature selection based on economic factors influencing 
agricultural prices, model training, and a rigorous evaluation framework that includes out-of-sample testing and  
cross-validation to assess forecast accuracy and robustness. Our findings indicate that especially transformer networks 
significantly outperform traditional econometric models and long short-term memory networks in forecast accuracy. This 
research contributes to the literature by providing a detailed methodological framework for the application of ML in 
agricultural price forecasting, offering insights for researchers, policymakers, and market participants. 
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1. Introduction 

 
Agricultural commodities, including grains, meat, 

and dairy products, form the backbone of global food 
systems. The ability to forecast these prices with higher 
accuracy holds significant implications for planting 
planning and food security. Forecasting agricultural 
commodity prices presents a multifaceted challenge, 
influenced by a variety of factors that make precise 
predictions difficult. 

Agricultural markets are highly seasonal, with 
prices subject to short-term fluctuations caused by 
seasonal events, holidays, and harvest periods. 
Predicting these fluctuations requires detailed 
knowledge of seasonal patterns and the ability to 
respond to market changes quickly. Due to 
unpredictable long-term weather and pest infestations, 
it is difficult to forecast production quantities, which 
complicates accurate price forecasting. The lag 
between sowing, growing and harvest leads to delayed 
supply adjustments to changing market conditions, 
complicating price trend forecasting. Many 
agricultural products are highly perishable, leading to 
rapid price changes in response to supply and demand 
fluctuations. Incorporating perishability into 
forecasting models poses a significant challenge. The 
quality of agricultural products varies significantly and 
directly influences prices. Forecasting price trends thus 
requires accurate quality assessments, which depend 
on many variable factors. The market power of large 
retail chains can lead to price distortions that are 
difficult to predict. These entities often have the 
capacity to influence prices, complicating the 
modeling of price formation on agricultural markets. 

Conventional statistical models, such as ARIMA 
(AutoRegressive Integrated Moving Average) and 

SARIMA (Seasonal ARIMA), are widely utilized in 
forecasting producer prices. These models analyze 
historical price data to identify patterns and trends, and 
based on these observations, predict future prices. 
However, they typically exhibit a linear structure and 
may not fully account for the complex interactions 
among various influencing factors and therefore with 
limited forecast accuracy [1]. 

A comprehensive analysis of recent research, 
discussing the strengths and weaknesses of various 
machine learning techniques concluded that machine 
learning has the potential to revolutionize agricultural 
price prediction [2]. This state-of-the-art study shows 
that, there is a lack of a systematic methodology, which 
describes a generic approach. In addition, currently 
invented transformer networks [3] have not been 
applied to improve prediction accuracy for time series 
data, yet. Therefore, this paper proposes a generic 
methodology to forecast agricultural commodity prices 
based on transformer networks. 
 
 
2. Methodology Steps 
 

The proposed methodology comprises a sequence 
of six main steps that are connected by two 
improvement loops. In the first step, relevant time 
series data has to be identified. These data have to be 
prepared and normalize in the following second step. 
In step three, a transformer network has to be 
configured by its model layers and hyperparameters. In 
step four, transformer network has to be trained. The 
forecast accuracy is validated based on out-of-sample 
testing and cross-validation in step five. Depending on 
this results step three has to be executed with tuned 
hyperparameters, iteratively. After achieving 
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sufficient forecast accuracy, the impact of time series 
data on prices has to be analyzed. Therefore, heatmaps 
give a quick and intuitive picture of temporal 
correlations. This helps to review selected time series 
data in step two in order to filter relevant data and 
reduce model complexity, thereby. 
 
 
3. Methodology Evaluation 
 

In a case study the proposed methodology was 
applied to oilseeds, potatoes, cereals, meat and milk 
prices that were provided by the German Lower 
Saxony Chamber of Agriculture [4]. 

Step 1: Relevant time series data are prices for 
energy, animal feed, seeds, fertilizer, pesticide, 
agricultural machinery, labor costs and land rental 
rates. In addition, weather data (rain amount, 
temperatures, sunshine hours), agricultural key figures 
(cultivated areas, livestock, number of farms and 
employees, subsidies), consumer behavior (per capita 
consumption, consumer spending on food), and 
macroeconomic key figures (inflation rates, exchange 
rates) have been identified. 

Step 2: Normalizing time series data is a critical 
preprocessing step before feeding the data into 
transformer networks. Transformers, by design, are 
sensitive to the scale of the input data, and 
normalization helps in stabilizing the training process 
and improving model performance. Z-Score 
Normalization (Standardization) was chosen. This 
technique involves transforming the data to have a 
mean of 0 and a standard deviation of 1. Each feature 
was normalized independently. Series data was split 

into a sequence of fixed-length windows (here:  
4 months). This involves creating input sequences that 
the transformer will learn from, typically using a 
sliding window approach. Time series data begins in 
December 2015 and ends November 2023. 

Step 3: The choice of model size (number of layers, 
dimensionality of the feedforward network, number of 
attention heads) reflected the complexity of the task 
and the amount of available data. Overly large models 
may overfit when trained on limited financial data. 
Implemented Keras model comprises six transformer 
encoders each with MultiHeadAttention layers and 
four attention heads. 

Step 4: Transformer network uses the Adam 
optimizer the for training, known for its effectiveness 
in handling sparse gradients and adaptive  
learning rates. 

Step 5: The loss function Mean Absolute Error 
(MAE) calculates the accuracy in forecasting prices. 
Cross-validation computes MAE results between 
0.0031 and 0.0124 for the best hyperparameter 
configuration of milk price prediction. 

Step 6: In heatmap (Fig. 1), colors indicate the 
strength and direction of the Pearson correlation 
coefficient of some selected time series for milk price 
in Lower Saxony. The color gradient from blue color 
to red shows the range from negative -1.0 to positive 
+1.0 correlation, with more intense colors indicating 
stronger correlations. Grey color represents small 
correlation with value near 0.0. Clusters of highly 
correlated temporal variables are visualized which 
indicate groups of variables that behave similarly  
over time. 

 
 

 
 

Fig. 1. Temporal Correlation Heatmap for Historical Milk Price in Lower Saxony (partial excerpt). 
 
 

4. Conclusions 
 

Based on the results of the evaluation, optimization 
strategies were developed to further enhance the 
performance of the models and ensure their 
applicability to real-world producer price forecasting 
problems. It is important to note that the successful 
application of the methodology depends on several 
factors, such as the quality of the available data, the 
adaptability of the transformer model, and the 
configuration of the appropriate hyperparameters. 
Summarized, the implemented pipeline for finding 
optimized hyperparameter values and the heatmap 

evaluation loop enables a continuous improvement 
process for forecasting prices. 
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Summary: The early detection of pressure ulcers is expected to improve the health of disabled patients and save 
hospital costs. Also, several existing devices have been developed to monitor wounds, we are presenting an 
original strategy that combines the different smart properties of conducting polymer nanocomposites (CPC) for 
the monitoring of the pressure applied on skin with piezo-resistive sensors (pQRS) and the evolution of volatiles 
emitted by bedsores with chemo-resistive sensors (vQRS). Piezo-resistive responses of the array of pQRS are 
converted with a Snowboard® card into coloured pixels to visualise the gradient of pressure applied on the skin, 
whereas chemo-resistive responses of the array of vQRS (e-nose) are analysed with a PCA algorithm to determine 
their discrimination ability between "normal" and "bedsore" olfactive imprints. 
Keywords: Vapour sensors, Pressure sensors, Polymer nanocomposite transducer, Bedsores detection, Quantum resistive 
sensors, PCA treatment. 
 

 
1. Introduction 

 
Pressure ulcers (PU) also called bedsores are a 

serious global health challenge, affecting hundred 
million people in the world and putting immense 
pressure on healthcare systems [1]. Sensor-based 
diagnostic tools and monitoring systems have emerged 
as a non-invasive solution to reduce the occurrence of 
new cases of PU and promise a significant reduction in 
treatment expenditure and time [2]. In particular new 
technologies such as wearable sensors [3], [4], 
electronic skin [5], [6], smart dressing [7], [8] or 
epidermal electronics [9], [10] offer a wide range of 
integrated monitoring platform solutions. 

Nonetheless, further innovations are necessary to 
associate multiple types of sensor arrays, particularly 
pressure and chemical sensor-based e-skins in a 
microsystem for performing real-time assessment of 
all the critical wound parameters, what is the objective 
of the present work. 

 
 

1.1. Materials 
 
For the synthesis of pQRS transducers, hybrids of 

carbon nanotubes from NANOCYL SA and graphene 
nanoplatelets architecture in house of card were 
stabilized by a poly(urethan) PU matrix [11]. 

For the synthesis of vQRS transducers, Fig. 1 
shows the series of polymers of different chemical 
selectivities towards the biomarkers that has been 
chosen, i. e., poly(vinyl pyrrolidone) PVP, poly(vinyl 
acetate) PVA, poly(lactic acid) PLA, poly(ethylene 
glycol) PEG, poly(caprolactone) PCL, poly(methyl 
methacrylate) PMMA, poly(styrene-co-acrylonitrile) 
SAN, poly(styrene) PS and sulfonated poly(ether-co-

ether-ter-ketone) PEEK, in order to functionalize 
nanocarbons [12]. 

All transducers were assembled hierarchically by 
spray layer by layer (sLbL) [14]. 

 
 

 
 

Fig. 1. Formulations of conductive polymer nanocomposite 
suspension used to sLbL transducers [13]. 

 
 

1.2. Processing 
 

All nanocomposite transducers are processed by a 
home-made additive manufacturing technology, i.e., 
spray layer by layer allowing a good control of the 
conducting architecture from the nano- to the micro-
scale, see Fig. 2.  

This process allows to adjust the initial resistance 
R0 between 50 to 500 kΩ, by varying either the amount 
of carbon in the CPC solution, and/or the number of 
sprayed layers. The nozzle forms a cone of atomized 
microdroplets of 50 µm diameter in which a good 
dispersion of carbon nanofillers and macromolecules 
into the solvent is preserved. When the microdroplets 
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hit and wet the surface, they are expected to weld 
together in 2D and subsequently in 3D during the 
evaporation of the solvent to form the transducer. 

Typically, from 10 to 60 nanolayers about 40 nm 
thick are sputtered onto interdigitated electrodes 
(obtained by micro-capacity cleavage) to fabricate a  
1 µm thick transducer. 

 
 

 
 

Fig. 2. Spray layer by layer process used for transducers' 
fabrication. 

 
 
1.3. Characterization 
 

To characterize the piezo-resistive behaviour of 
pQRS, we have assembled them into an array before 
submitting their individual surface of about 1 cm2 to 
standard weights from 200 to 1600 g as in Fig. 3. 
 
 

 
 

Fig. 3. Determination of pQRS sensitivity to pressure. 
 
 

The piezo-resistive response Ar = ∆R/R0 is then 
converted into a colour by a Snowboard® card to 
better visualize the pressure gradient with pixels. 

To characterize the chemo-resistive behaviour of 
the vQRS assembled into an array (e-nose), a vapour 
sensing device has been home-made (Fig. 4), using a 
carrier gas (dry nitrogen or air) driving a controlled 
quantity of volatile organic compounds (VOC) to be 
detected (target biomarkers) towards the cell 
containing the vapour sensors' array. 

 
 

 
 

Fig. 4. Vapour sensing home-made device (e-nose). 
 
 

In this device the VOC source can be either 
saturated vapours produced by bubbling into an 
Erlenmeyer containing a liquid or the head space 
composed of vapours desorbed from a patch heated 
into a balloon as in (Fig. 4). 

In a first step the e-nose is trained with biomarker 
vapours to confirm that both sensitivity and selectivity 
of vQRS are appropriate. Then it is exposed to vapours 
desorbed from patches picked from the skin of a 
healthy volunteer after 11 hours of contact (and sealed 
in a vial before desorption) to qualify a representative 
background (Fig. 5).  
 
 

 
 

Fig. 5. Patch samples preparation for the e-nose. 
 
 

This reference is then compared to artificial 
samples made of patches on which drops of biomarkers 
had been deposited prior to desorption. 
 
 
2. Results 
 
2.1. Piezo-resistive Behaviour 
 

A first proof of concept of pression mapping has 
been made with four quantum resistive pressure 
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sensors (pQRS) [15], assembled into an array to 
visualise the surface pressure applied on skin as can be 
seen in Fig. 6. 
 
 

 
 

Fig. 6. Pressure mapping with an array of four pQRS. 
 
 

To reach the ultimate objective, i.e., detecting when 
a disabled patient has seated too long in the same 
position, this matrix of four pixels could of course be 
extended to increase the precision of the diagnostic.  
 
 
2.2. Chemo-resistive Behaviour 
 

As an example, the chemo-resistive responses of 
four of the nine vQRS, PVP-CNT, PVA-CNT, PLA-
CNT and PEG-CNT have been plotted in Fig. 7. 
Typical signals are obtained upon successive cycles of 
5 min exposure to benzyl alcohol flow and dry nitrogen 
for rinsing. It can be noticed that vQRS respond all 
within the second, have reproducible and low noise 
responses, making unnecessary filtering. The 
desorption is complete as no drift is observed in R0, the 
initial resistance, meaning that no vapour molecule is 
kept inside the transducer. 

 
 

 
 

Fig. 7. Chemo-resistive response of an array of four vQRS 
to benzyl alcohol. 

 
 

Moreover, in this peculiar case, it can be seen that 
PVP-CNT exhibits the larger response to saturated 

vapours of benzyl alcohol, one of the identified 
biomarkers of pressure ulcers. 

To push vQRS closer to their limit of detection, in 
Fig. 8 the concentration of benzyl alcohol has been 
decreased from thousand ppm (parts per million) to 
hundred ppb (parts per billion), which shows that they 
still can detect molecules at that level which is closer 
to the application. 
 
 

 
 
Fig. 8. Ar of 6 vQRS to ppm level of benzyl alcohol 

 
 

Interestingly the amplitude of vQRS responses Ar 
max is found proportional to the analyte concentration. 
 
 
3. Analysis 
 

Integrating a set of pQRS into a cloth will allow 
triggering a preventive action to avoid a too long 
compression in the same area of the body and thus 
decrease the chances of bedsores' development. 

In complement to this information on the nature of 
the patient's seating, the collection of VOC emitted by 
the body (part of the volatolome) can bring a pertinent 
analysis on the possible level of degradation of skin (4 
steps can be identified until the bone is reached, but 
obviously being able to make an early diagnosis of the 
first one would prevent painful wound and long 
curing). During training, nine sensors of different 
nature have been exposed to eight VOC biomarkers of 
pressure ulcers (previously identified [16] by gas 
chromatography coupled with mass spectrometry) to 
confirm the complementarity of sensors and the full 
coverage of detection. Then in conditions closer to 
reality, the VOC desorbed from patches on which 
drops of biomarkers had been put, were analysed by 
the e-nose. Data treatment allowed the extraction of all 
maximum amplitudes Ar of sensors/vapours couples 
on five cycles to feed a PCA algorithm. This gave the 
graph of Fig. 9 where the discrimination ability of the 
e-nose to for different olfactive imprints, i.e., 
background, background + benzyl alcohol, 
background + pentadecane, background + tetradecene 
is clearly shown. 
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Fig. 9. PCA of vQRS response to express their 
discrimination ability. 

 
 

To go further it will be necessary to combine 
several VOC on the same patch, to investigate the 
influence of water molecules on the detection of 
biomarkers and to collect patches on true patients 
suffering from bedsores, which are the next steps of 
this study. 
 
 
4. Conclusion 
 

The proof of concept of using conductive polymer 
nanocomposite (CPC) based quantum resistive sensors 
QRS) both to map the pressure applied on patient skin 
in combination of with the identification of olfactive 
imprint of their skin is showing promises in the 
prevention of bedsores which is a significant 
healthcare challenge. 

However, using simple date treatments does not 
give yet a complete vision of the level of development 
of pressure ulcers, which would require to multiply 
experiments with true patches picked from patients 
with well-defined wounds. 

Both types of sensors were found highly sensitive 
respectively to pressure (some kPa) and vapours (some 
100 ppb) suggesting that these promising results 
represent a credible first step towards the prevention of 
pressure ulcers that will require further massive data 
collection, machine learning and artificial intelligence 
to build a sharper diagnostic. 
 
 
Acknowledgements 
 

The author would like to acknowledge Hervé 
BELLÉGOU for his input in the e-nose device 
development. 
 
 
References 
 
[1]. F. A. R. Mota, M. L. C. Passos, J. L. M. Santos, and 

M. L. M. F. S. Saraiva, Comparative analysis of 
electrochemical and optical sensors for detection of 
chronic wounds biomarkers: A review, Biosens 

Bioelectron, Vol. 251, No. 116095, May 2024,  
pp. 1–18. 

[2]. M. T. Tran, A. Kumar, A. Sachan, M. Castro,  
W. Allegre, and J. F. Feller, Emerging strategies based 
on sensors for chronic wound monitoring and 
management, Chemosensors, Vol. 10, No. 311, 2022, 
pp. 1–29. 

[3]. M. S. Brown, B. Ashley, and A. Koh, Wearable 
technology for chronic wound monitoring: Current 
dressings, advancements, and future prospects, Front 
Bioeng Biotechnol, Vol. 6, No. 47, Apr. 2018,  
pp. 1–21. 

[4]. I. Texier et al., SWAN - iCare project: Towards smart 
wearable and autonomous negative pressure device for 
wound monitoring and therapy, in Proceedings of the 
4th International Conference on Wireless Mobile 
Communication and Healthcare - ‘Transforming 
Healthcare Through Innovations in Mobile and 
Wireless Technologies’ (MOBIHEALTH 2014), 2015, 
pp. 357–360. 

[5]. Y. Liu, M. Pharr, and G. A. Salvatore, Lab-on-skin: A 
review of flexible and stretchable electronics for 
wearable health monitoring, ACS Nano, Vol. 11, No. 
10, Oct. 2017, pp. 9614–9635. 

[6]. M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. 
Tok, and Z. Bao, 25th anniversary article: The 
evolution of electronic skin (e-skin): A brief history, 
design considerations, and recent progress, Advanced 
Materials, Vol. 25, No. 42, Nov. 2013, pp. 5997–6038. 

[7]. M. Sharifuzzaman, et al., Smart bandage with 
integrated multifunctional sensors based on MXene-
functionalized porous graphene scaffold for chronic 
wound care management, Biosens Bioelectron, Vol. 
169, August 2020, p. 112637. 

[8]. Q. Zeng, X. Qi, G. Shi, M. Zhang, and H. Haick, 
Wound Dressing: From Nanomaterials to Diagnostic 
Dressings and Healing Evaluations, ACS Nano,  
Vol. 16, No. 2, Feb. 2022, pp. 1708–1733. 

[9]. R. C. Webb et al., Thermal transport characteristics of 
human skin measured in vivo using ultrathin conformal 
arrays of thermal sensors and actuators, PLoS One, 
Vol. 10, No. 2, Feb. 2015, p. e0118131. 

[10]. D. H. Kim et al., Epidermal Electronics, Science 
(1979), Vol. 333, No. 6044, Aug. 2011, pp. 838–843. 

[11]. T. T. Tung, C. Robert, M. Castro, J. F. Feller, T. Y. 
Kim, and K. S. Suh, Enhancing the sensitivity of 
graphene/polyurethane nanocomposite flexible piezo-
resistive pressure sensors with magnetite nano-spacers, 
Carbon N Y, Vol. 108, Nov. 2016, pp. 450–460. 

[12]. S. Nag, M. Castro, V. Choudhary, and J. F. Feller, 
Boosting selectivity and sensitivity to biomarkers of 
Quantum Resistive vapour Sensors used for 
volatolomics with nanoarchitectured carbon nanotubes 
or graphene platelets connected by fullerene junctions, 
Chemosensors, Vol. 9, No. 66, Mar. 2021, pp. 1–15. 

[13]. S. Nag, M. Castro, V. Choudhary, and J.-F. Feller, 
Boosting Selectivity and Sensitivity to Biomarkers of 
Quantum Resistive Vapour Sensors Used for 
Volatolomics with Nanoarchitectured Carbon 
Nanotubes or Graphene Platelets Connected by 
Fullerene Junctions, Chemosensors, Vol. 9, No. 4, 
Mar. 2021, p. 66. 

[14]. J. F. Feller, et al., Novel architecture of carbon 
nanotube decorated poly(methyl methacrylate) 
microbead vapour sensors assembled by spray layer by 
layer, J Mater Chem, Vol. 21, No. 12, 2011,  
pp. 4142–4149. 

[15]. T. T. Tung, C. Robert, M. Castro, J. F. Feller, T. Y. 
Kim, and K. S. Suh, Enhancing the sensitivity of 



6th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2024),  
17-19 April 2024, Funchal (Madeira Island), Portugal 

49 

graphene/polyurethane nanocomposite flexible piezo-
resistive pressure sensors with magnetite nano-spacers, 
Carbon N Y, Vol. 108, Nov. 2016, pp. 450–460. 

[16]. A. N. Thomas et al., Novel noninvasive identification 
of biomarkers by analytical profiling of chronic 

wounds using volatile organic compounds, Wound 
Repair & Regeneration, Vol. 18, No. 4, May 2010,  
pp. 391–400.

 
 



6th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2024),  
17-19 April 2024, Funchal (Madeira Island), Portugal 

50 

(017) 
 
 

A Markov Chain-based Data Augmentation to Improve Balance  
and Posture Stability in Spinal Cord Injury Rehabilitation 

 
Vibhuti 1,2, Neelesh Kumar 1,2 and Chitra Kataria 3 

1 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India 
2 CSIR – Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India 

3 ISIC – Indian Spinal Injuries Centre, New Delhi-110070, India 
Tel.: + 91-1722672278 

E-mails: vibhuti.csio19a@acsir.res.in; neel5278@csio.res.in; chitrakataria@yahoo.com 
 
 
Summary: Spinal cord injuries (SCIs) often lead to significant limitations in daily activities, including difficulties with 
posture, balance, and brain-spine connectivity. Virtual Reality (VR) therapeutic intervention can improve motor function and 
lessen neuropathic pain through rehabilitation. The data collected from the designed and developed VR rehabilitation system 
on motor functions addresses standing balance in incomplete SCI individuals. However, adequate data in clinical and  
e-rehabilitation settings remain a challenge. To address this, Markov chain-based data augmentation technique is employed to 
generate simulated data emulating original parameters. 30 SCI individuals were divided into experimental (EG) and control 
groups (CG) and assessed before and after VR intervention using different outcome measures (Berg Balance Scale (BBS), 
Activities Specific Balance Confidence (ABC), Walking Index for Spinal Cord Injury (WISCII)). Results indicate that 20 % 
of individuals in the EG and 53.33 % in the CG showed significant improvements in functional tasks based on the BBS. 
Moreover, on the ABC, 13.33 % of the EG and 33.33 % of the CG exhibited improved balance confidence and daily living 
activities. Regarding the WISCII scale, 46.66 % of the EG showed better walking impairment results than 80 % in the CG. 
Thorough statistical techniques and comparisons enhance the validity of rehabilitation outcomes. 
 
Keywords: Rehabilitation, Virtual reality, Spinal cord injury, Data augmentation, Markov chain. 
 
 
1. Introduction 

 
Neuromotor impairments, predominantly Spinal 

Cord Injury (SCI), impact 250000 and  
500000 individuals every year, according to the World 
Health Organization [1] (WHO). The manifestations of 
impairment are characterized by sensory symptoms 
such as pain, numbness, paresthesia, motor symptoms, 
viz. weakness, paralysis [2, 3], spasticity, and 
autonomic symptoms like bradycardia, hypotension, 
hypothermia, and erectile dysfunction. However, 
maintaining balance while standing [4] is highly 
dependent on it. Enhancing one's ability to balance 
when standing and control one's weight is essential for 
better activities. The adaptive movements of the 
extremities and the amalgamation and modulation of 
information from the somatosensory, visual, and 
vestibular systems help to maintain balance [1, 5]. The 
somatosensory organs are connected via the spinal 
cord. Balance difficulties [6] are caused by injury to 
the spinal cord. The impairment of proprioception 
following a central nervous system injury appears to 
have an impact on the balance of individuals with SCI. 
Nevertheless, research has been done too far to identify 
the impacted components of the balance system and 
the degree of proprioception impairment. Due to this, 
both individuals and society are burdened financially 
by the cost of medical treatment and management [7]. 
Affording timely rehabilitation [8, 9] of an affected 
extremity of an individual is a feasible solution. The 
most common approach to evaluating difficulties with 
movement is evaluating daily living activities. 

The optimal approach to activating the affected 
extremities employs a virtual reality (VR)-based 
rehabilitation process [10]. Due to technological 
advancements, the adoption of VR is currently 
growing. VR technologies are intriguing for various 
rehabilitation treatments and research fields [11, 12]. 
Many VR-based lower extremity rehabilitation 
technologies are focused primarily on posture and 
balance [6] to assist a diverse spectrum of individuals. 
On the other hand, task-oriented movements 
acknowledged relatively less attention. The article 
focuses on task-oriented movement, incorporating VR 
technology in medical care to distract individuals from 
pain, automating motor therapy by providing physical 
support for restricted motions and increasing 
motivation [13]. The hypothesis that using VR 
rehabilitation technology reduces pain and improves 
lower extremity motor function in individuals with 
incomplete SCI was assessed by pre and post-clinical 
assessments. Balance control was clinically evaluated 
using BBS (Berg Balance Scale), ABC  
(Activities-Specific Balance Confidence), and WISCII 
(Walking Index for Spinal Cord Injury) [9]. 

In the study, the rate of the severity of SCI in 
individuals is examined using the American Spinal 
Injury Association Impairment Scale (ASIA). There 
are some constraints to the collected data to 
compensate for the unbalanced database due to low 
availability. Considering the above limitation, the data 
augmentation approach has been introduced to 
generate new data samples based on statistical models. 
However, this article introduces Markov Chain-based 
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augmentation [14] to generate stimulated data from 
original data. With the help of this approach, the 
systematically simulated dataset is generated to 
enhance the stability and dependability of our research. 
 
 
2. Related Work 
 

A comprehensive review of the current state of 
research is discussed in this section. Prior studies have 
shown that data augmentation in rehabilitation with 
different methods is an area of the current research. As 
Isam Biukhennoufa, et al. [15] reported, post-stroke  
e-rehabilitation assessment with wearable health 
monitoring devices anticipated the Time Series 
Generative Adversarial Network (TS-GAN) model. It 
increased the activity recognition dataset's 
classification performance from 48.73 % to 90.8 % and 
the ARAT dataset's classification performance from  
63 % to 98.2 %. Another author, Chengxuan Qin, et al. 
[16] demonstrated a spatial variation generation 
algorithm for Motor Imagery (MI) data augmentation. 
Scalable Vector Graphics (SVG) performs better than 
other data augmentation algorithms in terms of 
improvement. Additional findings from the ablation 
research confirm that every SVG element works. 
Using various sample sizes in the CG demonstrates 
that the SVG algorithm continuously raises the area 
under the curve, with increases ranging from roughly 
0.02 to 0.15. However, the simulated dataset generated 
by a dual encoder variational autoencoder-generative 
adversarial network (DEVAE-GAN), as discussed by 
Chenxi Tian et al. [17], possesses a 97.21 % average 
accuracy across 15 individuals, a 5 % increase over the 
original dataset, and it is demonstrated that the 
generated data and the original data distribution are 
identical. Another finding by Yu Xie et al. [18] is that 
motor imagery electroencephalogram (EEG) signals 
with data augmentation technique were quite 
successful in raising the accuracy of training Visual 
Geometry Group (VGGNet), EEGNet, and the 
suggested model. The average accuracy of the 
suggested MI-EEG image classification approach is 
97.61 %. This method is improved by designing two 
distinct Convolutional Neural Network (CNN) scales 
for the time domain and Continuous Wavelet 
Transform (CWT) mapping maps, resulting in a more 
thorough feature extraction. The approach can enhance 
the classification performance of Brain-Computer 
Interface (BCI) systems designed for individuals with 
disabilities and MI-based BCIs. Kang Yin et al. [19] 
illustrated a framework for target-centered subject 
transfer as a method for augmenting data by using a 
generative model. A method discussed by Seong Jin 
Bang et al. [20], human activity recognition in 
rehabilitation activities presents an imbalance 
problem. STO-CVAE has done this to improve the 
preciseness of the classification of disabilities. During 
exercise, it can promptly predict emergency halt 
scenarios based on the impairment type. Continued 
research in this area employed by Ping-Huan Kuo et al. 
[21] represented extensive datasets, and model 

instability caused by SMOTE data augmentation 
during training can potentially be lessened. The 
suggested system can schedule occupational therapy 
appointments and diagnose dementia. However, three 
data augmentation techniques – SMOTE, NearMiss, 
and Markov chain-based augmentation – were 
investigated in this study to eliminate the class 
imbalance in rehabilitation data. Markov chain-based 
augmentation formulated new variables to replicate the 
sequential patterns recognized in the original dataset 
[22]. In comparison, SMOTE [23, 24] and Near Miss 
[25] approaches emphasize oversampling and  
under-sampling, respectively. Markov chain-based 
augmentation preserves the data structure by 
representing the time progression of affected motor 
movements and therapy sessions through statistical 
modeling of data development processes. Markov 
chain-based augmentation provides a more reliable 
method for synthesizing realistic synthetic samples 
than SMOTE and NearMiss, especially when 
sequential dependencies are essential, like 
rehabilitation data analysis [26, 27]. 

The fundamental objective of this research is to 
generate a simulated dataset from the original dataset 
collected from incomplete SCI individuals who 
suffered from standing balance or posture impairment. 
The collected data has a small sample size and uses a 
data augmentation method that can aid medical 
professionals. This analysis aims to educate academics 
and practitioners on the best methods for augmenting 
imbalanced datasets in rehabilitation research by 
analyzing before and after treatment. 

 
 

3. Materials and Method 
 
3.1. Database Description 
 

The information was collected from ISIC-Indian 
Spinal Injuries Center, New Delhi, India Institutional 
Review Board / Independent Ethics Committee. The 
records in the database originated from 30 standing 
balance SCI individuals comprising an EG  
(15 subjects) and a CG (15 subjects). However, this 
data was further categorized based on the AIS C and 
AIS D scale. The data was collected with the aid of VR 
therapeutic intervention as developed by CSIR-CSIO, 
Chandigarh. This semi-immersive VR activity has 
been integrated with health monitoring devices 
(postural stability assessment board and Inertial 
measurement units). The data was accumulated at the 
study's beginning upon individual enrolment and the 
completion of the rehabilitation program. 
 
 
3.2. Clinical Assessment Protocol 
 

The clinical evaluation tools employed to evaluate 
various aspects of an individual's daily functioning, 
medical conditions, and rehabilitation results can be 
used to characterize the clinical assessment used in the 
study. This involves delivering details about the 
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standardized clinical evaluation protocols, including 
the particular tests, scales, or questionnaires used to 
evaluate the relevant parameters, like motor function, 
balance, posture, and overall progress accomplished 
during rehabilitation. A systematic neurological 
examination called the ASIA measures motor and 
sensory function in individuals with SCI. ASIA A 
(complete), ASIA B (sensory incomplete), ASIA C 
(motor incomplete: more than half), ASIA D (motor 
incomplete: at least half), and ASIA E (normal) are the 
categories used to classify the severity of injuries. 
Regions from C2 to C4, C5 to T1, T2 to T12, L1 to L5, 
and S1 to S5 are among the sensory testing locations. 
According to the BBS, the quantification of static 
balance and fall risk ranges from 0 to 56, having  
14 items balance measure administrated 15 to  
20 minutes ranges from point 0 (lower level of activity) 
to point 4 (higher level of activity). The functional 
balance has been categorized into three stages:  
stage I (0-20), stage II (21-40), and stage III (41-56). 
However, the ABC has been used to assess confidence 
in balance for the activities of daily living, a 16-item 
administered 5 to 10 minutes ambits from 0 (no 
confidence) to 100 (complete confidence). It was 
segmented into three stages: stage I (0-49),  
stage II (50-79), and stage III (80-100). For the 
mobility assessment, assistive devices were assessed 
by one item administrated 5 minutes ambits from 0 
(incapable of ambulation) to 20 (capable of ambulation 
without assistive devices); the WISCI assessment was 
used. The three different categories for evaluation were 
stage I (0-5), stage II (6-10), and stage III (11-20), 
addressing the identified challenges effectively. 
 
 
3.3. Data Augmentation Process 
 

An illustration in the mathematical theory of the 
Markov chain-based data augmentation method based 
on: Let us assume  

 
 𝑋𝑋 =  { 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … … ,𝑋𝑋𝑛𝑛} (1) 

 
original dataset with n samples, where 𝑋𝑋𝑖𝑖 represents 
the 𝑖𝑖𝑡𝑡ℎ sample [28]. 

 
Transition Probability Matrix (P) 

Implement a transition probability matrix P with 
dimensions m × m, where m indicates the number of 
classes in the dataset [29]. 

 

 P = 
𝑃𝑃11 𝑃𝑃12 … … 𝑃𝑃1𝑚𝑚
𝑃𝑃21 𝑃𝑃22 … … 𝑃𝑃2𝑚𝑚
𝑃𝑃𝑚𝑚1 𝑃𝑃𝑚𝑚2 … … 𝑃𝑃𝑚𝑚𝑚𝑚

, (2) 

 
where P is the transition matrix, Pij is the transition 
probability from state i to state j. 

 
Stationary Distribution (π) 

Determine the states' and classes' long-term 
probability distribution in the Markov chain by 
computing the stationary distribution vector, or π. 

By figuring out the equation: 
 

 πP =  π, (3) 
 

subject to the constraint 
 

 ∑ π𝑖𝑖  =  1𝑚𝑚
𝑖𝑖 = 1   (4) 

 
Data Augmentation 

The transition matrix 𝑃𝑃 simulates transitions 
between clinical assessment scores to simulate new 
clinical assessment scores. From an initial clinical 
assessment score 𝑥𝑥𝑡𝑡, the next assessment score, 𝑥𝑥𝑡𝑡+1 
was determined by sampling from the probability 
distribution defined by the row corresponding to score 
𝑥𝑥𝑡𝑡 in the transition matrix. This process has been 
repeated to generate a sequence of clinical assessment 
scores. Mathematically, the equation for data 
augmentation in this context can be represented as: 

 
 𝑥𝑥𝑡𝑡+1  =  𝑥𝑥𝑡𝑡 ∗ 𝑃𝑃, (5) 

 
where xt is the current assessment score at time t, xt+1 is 
the simulated assessment score at time t+1, 𝑃𝑃 is the 
transition matrix representing the transition 
probabilities between different assessment scores. 

This equation represents the process of simulating 
transitions between assessment scores according to the 
transition probabilities defined by the transition  
matrix 𝑃𝑃. 

Perhaps the original dataset can be used to estimate 
the transition probabilities Pij. The augmentation 
procedure aims to create simulated samples [30] with 
Markov chain transitions that introduce variety while 
closely resembling the underlying class distribution in 
the original dataset. 

The transition probability matrix P and the 
stationary distribution π can be computed theoretically 
in the following ways [31]: 

Transition Probability Matrix: 
 
𝑝𝑝𝑖𝑖𝑖𝑖  =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖
  (6) 

 
Stationary Distribution 
 

 πP =  π, (7) 
 

 ∑ π𝑗𝑗𝑝𝑝𝑗𝑗𝑗𝑗𝑚𝑚
𝑗𝑗 = 1  =  π𝑖𝑖, (8) 

 
π1𝑝𝑝11 + π2𝑝𝑝21 + π3𝑝𝑝31 + ⋯+  

+π𝑚𝑚𝑝𝑝𝑚𝑚1  =  π1, 
π1(𝑝𝑝11 − 1) + π2𝑝𝑝21 + π3𝑝𝑝31 + ⋯+

+ π𝑚𝑚𝑝𝑝𝑚𝑚1 =  0, 
π1(𝑝𝑝11 − 1) + π2(𝑝𝑝21 − 1) + π3𝑝𝑝31 + ⋯+ 

+ π𝑚𝑚(𝑝𝑝𝑚𝑚1 − 1) =  0 

(9) 

 
The Markov Chain-Based Data Augmentation 

approach produces simulated data points that closely 
resemble the original dataset and successfully 
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represent the underlying data distributions the state 
probability vector and the transition probability matrix. 

 
 

4. Results and Discussion 
 

The results after data augmentation [15, 16] are 
presented and discussed in this section. The significant 
methodological procedures to optimize the research 
design and represent the statistical robustness of the 
analysis include balancing the dataset and categorizing 
individuals according to their AIS C and D levels. It 
was known that BBS, ABC, and WISCII assessments 
employed discrete values to illustrate specific 
balancing functions. Markov chains are superior at 
showcasing state transitions. Transitions between a 
score of 10 and 20 on the ABC indicate an overall 
improvement in the balancing function rather than a 
progressive, continuous improvement. The gap 
between the discrete nature of the assessment and the 

model's assumption of continuous transitions may 
cause synthesized data points to be generated that are 
unrealistic [28] and fall between integer values, which 
could minimize the augmentation's usefulness for this 
particular application. To deliver synthetic data for 
assessments performed before and after intervention in 
individuals with standing balance, the Python code 
pertains to a Markov chain-based data augmentation 
technique [14, 22]. The simulated data samples are 
generated for the AIS C and AIS D categories to ensure 
that the quantity of synthetic and original samples were 
balanced. The original and synthetic data samples are 
finally shown for validation and comparison. The 
study affirmed balanced representation by including  
15 participants in each group, with 8 AIS C and 7 AIS 
D individuals in the EG and 9 AIS C and 6 AIS D 
individuals in the GG, as illustrated in Fig. 1, 
respectively. Following data augmentation, the 
analysis demonstrated notable outcomes preferring the 
CG over the EG. 

 
 

 
(a) 
 

 
(b) 

 
Fig. 1. (a) Original and Simulated Data Distribution Plot for EG; (b) Original and Simulated Data Distribution Plot for CG. 

 
 
As illustrated in Fig. 2, none of the participants fell 

into Stage I after generating synthetic data from the 
BBS assessment. One participant fell into Stage II, 
while two fell into Stage III with AIS C. Only one fell 

into Stage III for the AIS D EG as in Fig. 2 (a). 
Similarly, four participants fell into Stage III for the 
CG for both AIS C and AIS D. Notably, the balanced 
dataset indicated significant results favoring the CG in 
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Fig. 2(b), with eight participants showing improved 
balance activities, compared to three participants  
in the EG. 

 

 
(a) 

 

 
(b) 

 
Fig. 2. (a) Individuals Improvements in EG; (b) Individuals 

Improvements in CG. 

As depicted in Fig. 3, no individuals were 
categorized under Stage I post-augmentation with the 
ABC assessment. Two individuals transitioned to 
Stage II, while one moved to Stage III within AIS C. 
Only one moved to Stages II and III in the AIS D EG. 

Similarly, within the CG, one individual 
transitioned to Stage II, while three moved to Stage III 
within AIS C. However, one individual in the AIS D 
CG moved to Stage II, and two transitioned to Stage 
III as in Fig. 4(a). Notably, the balanced dataset 
indicated a noteworthy advantage favoring the CG 
(Fig. 4(b)), with five individuals demonstrating 
enhanced balance activities compared to two 
individuals in the EG. 

As observed in the data generated from the WISCII 
assessment in Fig. 5, none of the individuals remained 
in stages I & II following data augmentation. Three 
individuals advanced to Stage III, those classified 
under AIS C. In the AIS D EG, four individuals 
advanced to stage III in Fig.6(a). Similarly, within the 
CG, three individuals advanced to Stage III within AIS 
C. However, within the AIS D CG, nine individuals 
progressed to Stage III. Remarkably, the balanced 
dataset highlighted a significant advantage favoring 
the CG, with twelve individuals in Fig. 6(b) exhibiting 
improved walking impairment compared to seven 
participants in the EG. 

 

 
(a) 

 

 
(b) 

 
Fig. 3. (a) Original and Simulated Data Distribution Plot for EG; (b) Original and Simulated Data Distribution Plot for CG. 
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(a) 

 
(b) 

 
Fig. 4. (a) Individuals Improvements in EG; (b) Individual 

improvements in CG. 

From these results, it has been concluded that the 
attributes of the analyzed dataset Markov chain-based 
data augmentation needed to be performed for our 
investigation. Discreteness has been shown by the 
findings, which consist of assessment scale scores for 
individuals with SCI. However, SMOTE [24] and 
NearMiss [25] were designed for continuous data and 
might not be able to manage the fundamental structure 
of discontinuous data well. The specified approach to 
data visualization demonstrates the data as a 
continuous function (i.e., a smooth line), although the 
real-world data points are discrete (i.e., whole numbers 
or specific categories). This provides key information 
on the progression of an individual rehabilitation and 
facilitates to identify underlying trends in the data and 
anticipate potential outcomes. 

 
 
 
 

 
 

 
(a) 

 

 
(b) 

 
Fig. 5. (a) Original and Simulated Data Distribution Plot for EG; (b) Original and Simulated Data Distribution Plot for CG. 
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(a) 

 

 
 

Fig. 6. (a) Individuals Improvements in EG; (b) Individual 
improvements in CG. 

 
 

5. Conclusion 
 

The study illustrated a statistical model approach of 
data augmentation to generate a synthetic dataset of 
standing balance SCI individuals. However, Markov 
chain-based data augmentation highlights overcoming 
the challenges of establishing random discrete data of 
assessment scales in the medical field. To balance out 
the AIS C and AIS D pre-post rehabilitation data and 
increase their relevance, stratified sampling processes 
were used. The EG and CG showed significant 
improvements in balance, confidence, and walking 
impairment. However, the CG was 
periodically outperformed by the balanced dataset on 
all assessment scales (BBS, ABC, and WISCII). It 
implies that compared to VR rehabilitation 
interventions, conventional rehabilitation produces 
significantly more significant improvements in 
functional performance. Of the 15 individuals in the 
EG, 20 % performed better on their balance, 13.33 % 
improved their balance confidence, and 46 % 
improved their walking ability. On the other hand, the 
same 15 individuals in the CG saw a 53.33 % advance 
in BBS, a 33.33 % advance in ABC, and an 80 % 
advance in WISCII. Furthermore, an aspect of the 
methodology is highlighted by the difference between 
the Markov chain model's assumption of continuous 
transitions and the discrete character of the assessment 
scale scores, which could result in the creation of fake 
synthetic data points. The study might need a 
more sufficient statistical ability to identify 
statistically significant group differences because there 
are only 15 individuals in each group. Examining 
alternative techniques tailored for discrete data could 
enhance the precision of forming synthetic data. 
However, using longitudinal data can convey a more 
detailed view of the effects of interventions by 

recording the steady shifts in performance over time. 
The resulting information provides you substantial 
knowledge on the current state of the individual's 
rehabilitation and facilitates you to recognize 
fundamental patterns in the data and predict future 
outcomes. 
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Summary: The paper presents an application of time–frequency technique for nonlinearity detection. The wavelet transform 
is used to transform an impulse response of the system into a time-scale domain. Ridge and skeleton definitions of wavelet 
transform for backbone curve estimation have been used. A statistical approach for ridge detection of wavelet transform has 
been applied. Estimation of dynamic characteristics of the system with the use of envelope of signal response has been 
presented. The possibility of using the method for nonlinearity detection has been shown based on the properties of wavelet 
transform. The method also makes it possible to define the nature of these nonlinearities. MATLAB package is used as a 
numerical tool for the computation of wavelet transform and dynamical characteristics of the system. The algorithm has been 
tested on simulated data and data from a test bed with dry friction. 
 
Keywords: Wavelet transform, Nonlinear systems, Backbone curve. 
 
 
1. Introduction 

 
Nonlinearities are effects that very often occur in 

mechanical systems. Structural, geometrical, and 
mechanical properties can cause it. Detecting 
nonlinearities and defining their properties are very 
important. Unlike linear systems, nonlinear systems 
can behave differently depending on excitation. 
Usually, it works unpredictably, e.g., small changes in 
initial conditions can lead to big changes in trajectory. 
Treatment of this kind of mechanical system as linear 
can be the reason for the incorrect results of the 
analysis. The paper attempts to use the wavelet 
transform for the detection of nonlinearities. 

 
 

2. Continuous Wavelet Transform  
 
The wavelet analysis is a method of signal 

decomposition. As a result of the wavelet analysis, 
elementary signals – so-called wavelets – are obtained 
in contradiction to the Fourier transform. Wavelet 
curves are continuous and oscillated with various 
duration times and spectrums. From the mathematical 
point of view, a wavelet transform of a signal x(t) can 
be defined as [3, 7] 

 

�𝑊𝑊𝑔𝑔𝑥𝑥�(𝑎𝑎, 𝑏𝑏) =
1
√𝑎𝑎

� 𝑥𝑥(𝑡𝑡)𝑔𝑔∗(
𝑡𝑡 − 𝑏𝑏
𝑎𝑎

)𝑑𝑑𝑑𝑑
+∞

−∞
 (1) 

 
Using properties of the wavelet transform [4], it 

can be proved mathematically that his kind of time-
frequency analysis decouples the natural frequency 
contained in the signal. It has been explained 
graphically in Fig. 1. 

The Morlet wavelet (Fig. 2) is one of the most 
widespread and often used functions in wavelet 
analysis. The Morlet wavelet is defined as  

𝑔𝑔(𝑡𝑡) = 𝑒𝑒𝑗𝑗2𝜋𝜋𝑓𝑓0|𝑡𝑡|𝑒𝑒−
|𝑡𝑡|2
2  (2) 

 
Additional information about wavelet transform 

can be found [2-4, 6].  
 
 

 
 

Fig. 1. Diagram of the analytical decoupling of natural 
frequencies. 

 
 
3. Nonlinearities Detection using Wavelet 

Transform  
 

The procedure of nonlinearities detection is based 
on definitions of the skeleton and ridge of the wavelet 
transform. The ridge of the wavelet transform  
(W x)(a,b) of the signal x(t) is a set of points (a,b) g in 
the wavelet transform domain, where phase 
𝑥𝑥(𝑡𝑡)𝑔𝑔𝑎𝑎,𝑏𝑏(𝑡𝑡) is stationary, which means that condition  
is fulfilled.  

 
𝑡𝑡0(𝑎𝑎, 𝑏𝑏) = 𝑏𝑏, (3) 
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where b is the translation (displacement) representing 
a region, a is the dilatation (expansion) or a scale 
parameter [3]. The skeleton of wavelet transform 
𝑊𝑊𝑔𝑔𝑥𝑥(𝑎𝑎, 𝑏𝑏) of signal x(t) is the set of g coefficients of 
the wavelet transform calculated from ridge 
𝑊𝑊𝑔𝑔𝑥𝑥(𝑎𝑎𝑟𝑟(𝑏𝑏), 𝑏𝑏), where ar is the parameter of the ridge 
scale [6]. Graphically, the definition of the ridge and 
skeleton of the wavelet transform is shown in Fig. 3.  
 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 2. An example of a Morlet wavelet is a) In an 
imaginary domain, and b) In a real and imaginary part. 

 
 

Based on the properties of the wavelet transform 
presented above, the algorithm of nonlinearity 
identification has been created. A diagram of the 
method is presented in Fig. 4.  

In the first stage of the method, the wavelet 
transform matrix coefficients is calculated. This 
matrix can be interpreted as an energy distribution of 
the signal in time–frequency domain. From this 
matrix, the ridge curve is estimated. Detection of the 
ridge curve leads to an estimation of the skeleton of 
the wavelet transform. Based on the skeleton, the 
envelope of the given frequency component can be  

For the linear signals, the envelope function can be 
written as estimated. 

 
𝐴𝐴(𝑡𝑡) = 𝐴𝐴0𝑒𝑒−ξ𝜔𝜔𝑛𝑛𝑡𝑡 (4) 

 
 

Fig. 3. a) Ridge of wavelet transform; b) Skeleton  
of wavelet transform. 

 
 

Based on this, the system's modal parameters can 
be estimated. For nonlinear systems, the envelope 
function will depend on the type of damping and 
stiffness nonlinearities. Using ridge and skeleton 
definition, the characteristic called the Backbone 
curve can be determined. This characteristic shows the 
dependencies between the natural frequency and 
envelope functions of the system's impulse response. 
The backbone curve doesn’t depend on envelope 
function and has a constant value for linear systems.  

Using the curve fitting method for estimated 
characteristics, modal parameters of nonlinear systems 
can be estimated. The characteristics for linear and 
nonlinear systems presented are shown in Fig. 5.  

The main problem with this method is estimating 
the wavelet transform's ridge curve. A method based 
on maximal values of wavelet coefficients for every 
section of the matrix in the time domain is often used 
[2, 6]. This method can work properly only if the 
signal-to-noise ratio has a big value. Otherwise, it is 
possible to appear local maxima connected with noise. 
In this case, the result of the analysis can be incorrect. 
For this reason, the algorithm of detection ridge of 
wavelet transform is based on the statistical approach 
of scalograms. The base of this method is the 
digitization of the wavelet coefficients matrix and the 
estimation of a three-dimensional histogram of these 
coefficients. 
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Fig. 4. Diagram of the nonlinearities identification with wavelet transform. 
 
 

 
 

Fig. 5. Comparison of characteristics for linear and nonlinear systems. 
 
 

This operation can effectively eliminate local 
maximums caused by noise. A comparison of results 
can be shown in Fig. 6 and Fig. 7.  

Estimated ridge curve and envelope function for a 
given natural frequency are possible to determine 
amplitude–frequency characteristic (Backbone curve). 

The backbone curve gives information about stiffness 
nonlinearities in the system. The impulse response 
envelope function gives information about types of 
damping in the system. Analytical functions for 
different types of damping and stiffness can be found 
[1, 5]. 
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Fig. 6. a) Analyzed signal; b) Scalogram of the signal; 
c) Ridge curve obtained from scalogram  

(“maximum” approach). 
 
 

 
 

Fig. 7. a) Three – dimensional histogram of wavelet 
transform; b) Ridge curve obtained from scalogram 

(“statistical” approach). 

4. Numerical Verification 
 

Numerical verification of proposed algorithms has 
been carried out. Response signal of nonlinear single 
degree of freedom system with dry friction and cubic 
stiffness has been described by formula  

 

�
𝑑𝑑2

𝑑𝑑𝑑𝑑2
𝑦𝑦(𝑡𝑡)� + 0.001𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑦𝑦(𝑡𝑡)�

+ 0.16𝜋𝜋2𝑦𝑦(𝑡𝑡)
+ 100𝑦𝑦𝑦𝑦(𝑡𝑡)3 

(5) 

 
Additionally, the signal was disrupted by noise. 

Time history of the signal, scalogram and ridge curve 
are presented on Fig. 8.  

In the next step the character of nonlinearities has 
been determined. It has been done by curve fitting 
method, using known dependences between envelope 
function and type of damping. 
 
 

 
 

Fig. 8. a) Analyzed signal; b) Envelope function; 
c) Ridge curve; d) Backbone curve. 

 
 
As a criterion Root Mean Squares Error has been 
applied. Result of analysis compare in the Tables 1-3 
below. 

 
 

Table 1. Modal parameters of the system. 
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Table 2. Results (stiffness). 
 

 
 

Table 3. Results (damping). 
 

 
 
 

The last stage of the verification was analysis of 
test stand (Fig. 9). The system's impulse response is 
presented in Fig. 10. 

Using the method the characteristic of the system 
has been estimated (Fig. 11). 

Estimation of modal parameters has been carried 
out. Identified parameters has been used for creation 
an analytical model of the signal in order to method 
verification. Results has been presented in the Table 4 
and has been shown on the Fig. 12.  
 
 

 
 

Fig. 9. Test stand. 
 
 

 
 

Fig. 10. Impulse response of the system. 
 
 

 
 

Fig. 11. a) Scalogram of the signal, b) Ridge curve,  
c) Backbone curve, d) Envelope.  

 
 

 
 

Fig. 12. a) Envelope of the signal; b) Comparison (model 
and signal). 

 
 

Table 4. Identified parameters. 
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Assumed model was a linear model and result are 
correct only for initial part of the signal. The ending 
part of decay a difference between model and signal 
are visible. For this part of signal analysis with 
nonlinear model has been carried out. Result of 
estimation collected in the Table 5 and show Fig 13 
and Fig 14.  
 
 

Table 5. Identified parameters. 
 

 
 
 

 
 

Fig. 13. Envelope of ending part of the signal. 
 
 

 
 

Fig. 14. Comparison (model and signal). 
 
 

5. Conclusions and Further Works  
 

The numerical analysis confirmed that applying 
wavelet transform make possible to detect 
nonlinearities of the mechanical systems and can 
define character of this nonlinearities. The method of 
ridge curve detection allows to identify dominant 
frequency components in the signal for noised signals. 
The algorithm estimates correct values of modal 
parameters.  

It is necessary to carry out consider for natural 
frequency decoupling for multi degree of freedom 
systems. The next stage of the researches should be 
creation a method for nonlinear systems with 
operational excitation.  
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Summary: This theoretical study focuses on optimizing the positioning of blade tip timing probes to enhance the analysis of 
turbomachinery performance. The accurate measurement of blade vibrations is crucial for assessing the health and efficiency 
of turbines and compressors. By strategically placing the probes at specific locations along the blade tips, we aim to improve 
data collection precision and reliability. This paper explains the theoretical background of optimized approaches for 
determining the optimal probe positions, aiming to maximize data accuracy and minimize errors in vibration analysis. 
 
Keywords: Blade tip timing, Error size, Sensor’s arrangement, Vibration. 
 

 
1. Introduction 
 

In turbomachinery, accurate measurement and 
analysis of blade vibrations are essential for optimal 
performance and reliability. Blade tip timing probes 
have become valuable tool for monitoring blade 
vibrations in rotating machinery. Strategic probe 
positioning allows engineers to collect precise data on 
blade deflections and frequencies, facilitating the 
diagnosis of potential issues and optimization of 
overall system performance [1]. 

Optimizing blade tip timing probe placement 
involves considering factors such as blade geometry, 
machinery rotational speed, and desired measurement 
accuracy level. This theoretical study aims to explore 
these parameters' influence on optimal probe 
positioning and develop a framework to maximize 
probe effectiveness in detecting blade vibrations [2]. 

Previous research [3] has shown that the probes’ 
positioning uncertainty has a moderate effect on blade 
tip timing system output and is crucial for system 
calibration. Therefore, evaluating and minimizing 
uncertainty associated with later stages, which carry 
higher uncertainty, is imperative. 
 
 
2. Blade Tip Timing 
 

A typical blade tip timing system consists of 
several key components: 

Sensors: These are typically non-contact optical 
sensors such as laser or capacitive sensors that are 
mounted around the rotating blades to detect the time 
of passage. 

Signal conditioning unit: This component 
processes the signals from the sensors to extract 
relevant information such as blade tip timing data. 

Data acquisition system: collects and stores the 
blade tip timing data for future analysis. 

Post-processing tools: those tools are often 
analysis software’s, which are used to analyze the 
collected data and extract useful insights into the 
dynamic behavior of the blades and monitoring and 
control interface: This component provides real-time 
feedback on the performance of the blades and may 
trigger alarms or shutdown procedures in case of 
abnormal behavior. 
 
 
3. Probe Positioning Optimization Method 
 

The following explanation on the optimization 
technique builds upon our previous exploration 
provided in [4]. We assume that the vibration yi has  
the form: 

 
𝑦 ௜  ൌ  𝑑 ൅  ∑ 𝑎 ௞𝑠𝑖𝑛ሺ𝐸𝑂௄ሺ𝜃௜ ൅

௠
௞ ୀ ଵ

൅2𝜋𝑛ሻሻ ൅  ∑ 𝑏 ௞ 𝑐𝑜𝑠ሺ𝐸𝑂௄ሺ𝜃௜ ൅ 2𝜋𝑛ሻሻ௠
௞ ୀ ଵ , 

(1) 

 
where i is the probe number and k is the mode number, 
m is the highest mode number, EO and ak is the 
Engineer order and the amplitude relevant to the mode 
k, 𝜃 is the angular position of the sensor i and n is the 
number of rotation. The assessment of optimal probe 
positioning can be facilitated through the consideration 
of error size and the Root Mean Square Error (RMSE). 
Specifically, the error size (𝝃z), denoted as the 
Euclidean norm of the disparity between the estimated 
value z and the true value ztrue, is mathematically 
represented as follows: 
 

 ξ௭  ൌ  ‖𝑍 െ 𝑍௧௥௨௘‖ଶ (2) 
 

Additionally, the expression for RMSEz is: 
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 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘  =  �1
𝑀𝑀
∑ (𝑍𝑍𝑖𝑖 − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2𝑀𝑀
𝑖𝑖 = 1 , (3) 

 
in this scenario, zi represents the ith estimated 
coefficient vector, while ztrue stands for the true 
coefficient vector, with M representing the total count 
of random realizations. It's evident that for a singular 
realization, RMSEz and 𝝃𝝃z are identical, thus 
interdependent. When dealing with multi-mode blade 
vibration, instead of employing 𝝃𝝃z or RMSEz, we might 
prioritize evaluating the Root Mean Square Error 
(RMSE) of the vibration amplitude for the specific 
mode of vibration of interest. Let's denote Ak as: 
 

 𝐴𝐴𝑘𝑘  =  �𝑎𝑎𝑘𝑘2 + 𝑏𝑏𝑘𝑘2, (4) 
 
the amplitude of the mode 𝑘𝑘 obtained through the 
estimator or the mathematical model 𝐴̂𝐴𝑘𝑘: 
 

 𝐴̂𝐴𝑘𝑘  =  �𝑎𝑎�𝑘𝑘2 + 𝑏𝑏�𝑘𝑘2 (5) 

 
The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 of the mode 𝑘𝑘 is defined as follows: 

 
 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘  =  �1

𝑀𝑀
∑ �𝐴𝐴𝑘𝑘𝑘𝑘 − 𝐴̂𝐴𝑘𝑘�

2𝑀𝑀
𝑖𝑖 = 1 , (6) 

 
where Aki represents the ith estimated amplitude of 
vibration of mode k, and M denotes the total number 
of estimations. In a single-mode model without a 
constant offset, it's evident that the Mean Square Error 
equates to the mean of the error size 𝜉𝜉z. Therefore, 
instead of computing the RMSE in this specific 
scenario, we propose a comprehensive algorithm that 
facilitates the selection of optimal probe positioning by 
minimizing the coherence μ of the design matrix. To 
provide a basis for comparison with existing methods, 
the algorithm integrates the minimization of error size 
𝜉𝜉z, the minimization of different RMSEs depending on 
vibration modes, and the minimization of the condition 
number Cond. Hence, the general steps for 
determining the best probe positioning are as follows: 

• Determine the desired number of probes  
denoted L; 

• Generate subsets, denoted as l, from the pool of L 
probes, and construct the sensitivity matrix for 
each configuration; 

• Utilize the combined Auto-Regression with Least 
Squares Method to ascertain the vibration 
parameters for each set of probe positions; 

• For each configuration: Calculate the condition 
number and coherence of the design matrix and 
evaluate the error size and the RMSEz/RMSEk of 
the estimate corresponding to the mode of 
vibration k, or the average if multiple modes are 
of interest; 

• Choose the probe configuration that yields the 
most favorable results based on the  
computed metrics. 

4. Study Case 
 

Applying the previous algorithm considering that 
the blades have simultaneous synchronous and 
asynchronous vibration. Our Bladed disk is an  
aero-compressor bladed disk of 29 blades rotating  
at 83 Hz. 

The Blades found to be vibrating at the following 
frequencies wi = {332, 482.2, 599.3} (Hz), with the 
following corresponding amplitude Aj = {0.3, 0.2, 0.1} 
(mm) respectively. We assume that the selection of 
probes will be based on a previous configuration that 
consists of L = 18 equally distributed probes. The 
selection of 3 probes from this configuration enables 
1140 possible sets of probes Si. Table 1 summarize the 
three best selected based on the minimum occurred 
error size, condition number and coherence and  
the RMSE. 
 
 
Table 1. Different probe configurations selected  
after the minimization of the error size 𝜉𝜉z, the condition 
number and the coherence (𝛷𝛷) with normal  
distributed noise. 

 
Si 𝝃𝝃 Cond µ RMSE 

S1: (4,9,17) 1.344 1.764 0.919 1.04 
S2: (0,13,17) 1.716 1.33 0.796 1.295 
S3: (0,11,18) 1.679 1.759 0.665 1.264 
S4: (4,9,18) 1.345 1.799 0.867 1.01 

 
 
Fig. 1 illustrates coherence, error size, and 

condition number relationships. Most probe positions 
have a condition number below 10, implying limited 
alterations in the system's solution with input data 
errors. Notably, no correlation exists between 
condition number and error size. Thus, a  
well-conditioned system may still have a large error 
size, resulting in lower accuracy in coefficient  
vector prediction. 

 
 

 
 

Fig. 1. Coherence evolution across condition number  
and Error size. 

 
 

5. Conclusion 
 

This work aimed to investigate the optimal probe 
position in Blade Tip Timing system. This approach 
was applied in the case of combined synchronous and 
asynchronous vibrations in order to find the right 
configuration based on the error size. Yet considering 
the selected case of study, we did not find any 
correlation between the error size and the coherence. 
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Summary: Left ventricle (LV) segmentation in cardiac computed tomography angiography (CCTA) is an important and 
challenging task for the evaluation of cardiovascular diseases. In this framework, a deep learning approach for LV 
segmentation can overcome the issues related to its manual delineation, which is time consuming and prone to error. In the 
current study, we present an automatic method for segmentation of the LV in CCTA scans using the UNet 2.5D. The study 
includes 85 patients scans (for a total of 6171 images), whose LV segmentation was manually performed by expert radiologists 
and used as ground truth. The developed model provided a mean Dice score of 89 % on the test set, overcoming the 
performance obtained with the original and LSTM UNet models. The results achieved showed the potential of UNet 2.5D to 
provide accurate LV segmentations. 
 
Keywords: Left ventricle, Segmentation, Deep learning, UNet 2.5D, Cardiac computed tomography. 
 
 
1. Introduction 

 
Cardiac substructure segmentation is a crucial step 

for cardiovascular disease diagnosis and treatment. 
Cardiac computed tomography angiography (CCTA) 
is a non-invasive imaging technique that is performed 
routinely for disease diagnosis and treatment planning. 
CCTA is often preferred by clinicians as it provides 
detailed anatomical information with high  
signal-to-noise ratio and good spatial resolution [1]. 
The left ventricle (LV) holds a key role in the study of 
cardiac function and disease diagnosis. For this reason, 
delineating LV boundaries represents an important 
step to investigate significant heart parameters such as 
the ejection fraction, stroke volume, LV mass,  
end-systolic volume, and end-diastolic volume [2]. 

Segmenting the LV represents a challenging task 
due to its large variations in shape, size, as well as 
contrast [3]. The manual delineation is time 
consuming, prone to inter and intra-observer 
variability and requires the availability of staff and 
additional resources. For these reasons, a fast and fully 
automated segmentation algorithm is necessary to 
improve diagnostic efficiency for the early detection 
and analysis of cardiovascular risk biomarkers. 

Previous studies dealing with LV segmentation 
exist. In [3] a two-step LV segmentation, based on 
level-sets deformable contours, was performed in 
multi-slice CT images. LV internal wall was 
segmented, and then the external wall was obtained 
according to the shape of the internal wall using a 
coarse-to-fine strategy which first detected the LV and 
then refined the myocardial surface with contour 
evolution techniques and shape constraint [4]. 

Recently, convolutional neural networks (CNNs) 
segmentation-based methods, especially U-net-like 

models [5], have been widely investigated for cardiac 
segmentation. In [6] a combination of 3 CNNs was 
used to independently localize the LV on the axial, 
coronal, and sagittal plane, creating a bounding box 
around it. Thereafter, a dedicated CNN was built to 
identify voxels belonging to the LV. A UNet-based 
method was also employed in [7], with a 3D deep 
attention U-Net (DAU-Net), combining an attention 
U-Net [8] and a deep supervision. In [9] Li et al. 
proposed an 8-layer residual U-Net with deep 
supervision whose results were compared with the 
segmentation output obtained from the original U-Net 
and FC-DenseNet56 [10]. 

In the current study we propose a UNet architecture 
variant called UNet 2.5D to automatically segment the 
LV. Finally, the performance of this model will be 
compared with the results obtained from the original 
and the LSTM-based UNet models. 
 
 
2. Materials and Methods 
 
2.1. Dataset 
 

The analyzed dataset consists of CCTA scans 
collected from 85 patients suffering from three 
different pathologies: amyloidosis (AM), aortic 
stenosis (AS) and hypertrophic cardiomyopathy 
(HCM). Each patient scan comprises a mean of  
73±17 slices (range 30-115), where the LV was visible. 
The LV was manually delineated by expert 
radiologists and used as ground truth. The dataset was 
splitted into train, validation and test sets containing  
75 %, 15 %, and 10 % of the patients, respectively, 
keeping the original disease stratification. 
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2.2. CCTA Scan Protocol 
 

CCTA images used in this study were acquired 
using 256-slices (Revolution CT; GE Healthcare, 
Milwaukee, WI) or 320-slices wide volume coverage 
CT scanner (Aquilion ONE VisionTM; Canon Medical 
Systems Corp., Tokyo, Japan). No premedication with 
beta-blockers or nitrates was added before CT 
acquisition. Revolution CT scans were acquired with 
the following parameters: peak tube voltage of 100 kV, 
detector collimation of 160 mm using 256 rows by 
0.625 mm on Z-axis. Patients received a fixed dose of 
50 ml bolus of contrast medium (400 mg of iodine per 
milliliter, Iomeprol; Bracco, Milan, Italy). Aquilion 
ONE Vision scans were acquired using a peak tube 
voltage of 120 kV, detector collimation, 320 detector 
rows, 1.2-mm section thickness. The study, approved 
by the Institutional Ethical Committee, conforms to the 
Declaration of Helsinki, and all participants gave 
informed consent. 
 
 
2.3. Image Preprocessing and Augmentation 
 

Preprocessing steps were performed before model 
training to ensure consistent input dimensions and 
intensity values. 

Since CT images were acquired using different CT 
scanner, a voxel intensity normalization was 
performed converting raw CT voxel intensity values to 
Hounfield Unit (HU) according to the rescale slope and 
rescale intercept parameters [11] found in the DICOM 
header. Therefore, windowing was performed: this is a 
preprocessing technique employed to fine-tune the 
contrast and brightness of medical images. It involves 
mapping the original pixel values to a new selected 
range capturing the characteristic HU values of the 
tissues of interest. Intensities exceeding this predefined 

range are displayed as black or white, while intensities 
within the designated range are mapped to the 
grayscale spectrum. Performing windowing, window 
level and window width need to be set: window level 
represents the center of the new range, while the 
window width represents the width of the range. The 
window level and width values commonly used for CT 
scans of the heart and ventricles, are 40 and 400, 
respectively, and they provide good contrast between 
the blood pool, myocardium, and other tissues. 
Ultimately, pixel intensities were normalized between 
0 and 1. 

Once preprocessed, data augmentation was 
performed by applying various transformations, such 
as rotation, scaling and flipping to the original images. 
Using data augmentation, the size of the training 
dataset was artificially increased, improving the 
generalization capability of the deep learning  
(DL) model. 
 
 
2.4. Segmentation Models 
 

Three DL-based segmentation models were 
implemented and evaluated in this study: 

Original UNet: the UNet architecture, proposed by 
Ronneberger, et al. [5] and commonly used for image 
segmentation tasks, was slightly modified in this study 
to improve training stability, and prevent overfitting 
(see Fig. 1). In particular, a dropout, which consists of 
randomly dropping out some of the neurons during 
training, was included in the contracting path, after 
each convolutional layer, with a probability of 0.5. In 
addition, L2 regularization was applied to the 
convolutional layers, with a weight decay of 0.0001, 
together with a batch normalization which reduced the 
dependence on the initialization of the weights [12]. 

 

 
 

Fig. 1. Dice coefficient of the three models in the validation set. The red asterisk (*) indicates statistical significance (<0.05) 
comparing the UNet 2.5D, against the other two models, with a Wilcoxon signed-rank test. 

 
 
Unet 2.5D: a variant of the UNet architecture 

designed to exploit the temporal dependency between 
consecutive CT slices. The UNet 2.5D model 
architecture consists of an encoder and a decoder 
pathway, similar to the original UNet architecture of 
Fig. 1. The encoder pathway consists of four  
down-blocks, where each down-block consists of two 
convolutional layers, followed by a ReLU activation 

function and batch normalization. Each down-block 
also includes a max-pooling layer that down samples 
the feature maps. The decoder pathway consists of 
three up-blocks, where each up-block consists of a 
transposed convolutional layer, followed by two 
convolutional layers, ReLU activation, and batch 
normalization. The up blocks also include skip 
connections that concatenate the corresponding feature 
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maps from the encoder pathway. Compared to original 
UNet, the main difference relies on the model input, 
which consists of 3-channel, instead of a single one, 
each of them representing a consecutive CT slice. 
Using this input, the obtained output is a 2D 
segmentation mask of the middle slice, predicted by 
considering the spatial information contained in the 
previous and next slices. 

UNet LSTM: UNet architecture integrated with a 
Long Short-Term Memory (LSTM) level of 256 filters 
[13], placed after the final convolutional layer in the 
contraction path. This architecture is useful for 
modeling temporal dependencies in the input data, 
such as CT scan. 
 
 
2.5. Model Evaluation 
 

The performance of the segmentation models was 
assessed using the Intersection over Union (IoU) and 
Dice Coefficient, which measure the model ability to 
accurately segment the LV and are defined as 
 

 IoU = |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴∪𝐵𝐵|

, (1) 
 

 Dice = 2 ×(𝐴𝐴∩𝐵𝐵)
(A+B) 

, (2) 
 
where A is the ground truth segmentation and B is the 
predicted segmentation. The IoU represents the area of 
overlap between A and B over the union area. The Dice 
is calculated dividing two times the intersection 

between A and B by the sum of the two segmentation 
regions. The models were trained using different loss 
functions, such as Binary Cross Entropy and Soft Dice 
Loss, to investigate their impact on the segmentation 
performance. 
 
 
3. Results 
 
3.1. Validation Set 
 

Figs. 1 and 2 report the performance, in terms of 
Dice and IoU, reached with the 3 models considering 
all the slices for each patient in the validation set. It can 
be observed that UNet 2.5D achieved the highest Dice 
and IoU values for all patients. The average Dice was 
0.87±0.03 for UNet 2.5D, followed by the LSTM and 
original UNet (both 0.86±0.04). The average IoU was 
0.78±0.05 for UNet 2.5D, followed by the LSTM 
(0.77±0.06) and original UNet (0.76±0.06). 
 
 
3.2. Test Set 
 

The model showing the best performance on the 
validation set, i.e., the UNet 2.5D, was employed to 
segment the LV in the test set. The segmentation 
results for these patients are summarized in Table 1. 
The model achieved high performance in terms of 
mean Dice coefficient, ranging from 88 % to 91 %, and 
mean IoU, ranging from 78 % to 84 %. 

 

 
 
Fig. 2. IoU coefficient of the three models in the validation set. The red asterisk (*) indicates statistical significance (<0.05) 

comparing the UNet 2.5D, against the other two models, with a Wilcoxon signed-rank test. 
 
 
Table 1. Metric results for UNet 2.5D on the test set. 

 
Patient N images Dice IoU 

HCM13 75 0.869±0.111 0.776±0.149 
HCM01 64 0.907±0.121 0.831±0.035 
AM29 115 0.900±0.031 0.819±0.050 
AS054 54 0.890±0.020 0.802±0.032 
AS002 71 0.912±0.012 0.839±0.021 
AS021 40 0.885±0.017 0.794±0.027 
AS024 75 0.877±0.031 0.782±0.048 
Mean 71 ± 22 0.891±0.035 0.806±0.051 

 
Overall, the results demonstrated the effectiveness 

of the UNet 2.5D model in accurately identifying and 
segmenting LV of cardiac CT images. Fig. 3 reports an 

example of the ground truth and predicted masks, 
showing the promising results provided by the 
developed model. 
 
 
4. Discussion 
 

Image segmentation plays a crucial role in the field 
of medical imaging. In cardiological clinical 
applications, accurate segmentation of LV is a key step 
to diagnose and monitor several cardiovascular 
diseases. CCTA has become an important clinical 
diagnostic tool due to its non-invasive, short exam 
time, and low cost. 
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Fig. 3. Example of real (blue line) and predicted (yellow 
line) mask obtained for patient HCM13 (Dice = 0.869,  

IoU = 0.776). 
 

In the current study, we proposed and compared an 
automated DL approach, using UNet 2.5D, to segment 
the LV in CCTA scans. The model was evaluated and 
compared with the original and LSTM UNet. The 
UNet 2.5D model exhibited the best performance on 
the validation set, both in terms of mean Dice 
coefficient and mean IoU, overcoming the results 
achieved with the original UNet. Therefore, the UNet 
2.5D model was chosen to be applied on the test set 
images on which a mean Dice ranging between 0.87 to 
0.91 was obtained. It was observed that with respect to 
the original, and LSTM, UNet models, the UNet 2.5D 
generated masks with precise boundaries and 
accurately captured the anatomical characteristics  
of the LV. 

Actually, most of the DL approaches reported in 
literature for LV segmentation from CCTA, proposed 
UNet-based methods. Zreik et al. [6], was the first to 
employ CNNs, combining four of them to first localize 
the LV and then identify voxels belonging to it: the 
study reached a Dice coefficient of 0.85 on five scans. 
In [14] the study tested a fully convolutional network 
based approach achieving a Dice of 0.88 on 30 scans. 
Progresses were obtained by Guo et al. [7], employing 
a DAU-Net with a mean Dice coefficient of 0.916 on 
20 scans. Furthermore, in [9] Li et al. computed the 
ground truth annotations using an interactive  
semi-supervised algorithm and developed an 8-layer 
residual U-Net with deep supervision which achieved 
a mean Dice of 0.92 on 20 patients. 

To the best of our knowledge the UNet 2.5D has 
never been tested for the LV segmentation task. The 
primary benefit of this model lies in its ability to 
provide better performance compared to the traditional 
2D approach with less computational resources than a 
3D approach. The results achieved are promising and 
comparable to other studies. Some limitations exist: 
the model was not tested on publicly available datasets, 
making it difficult to draw comparisons with respect to 
other developed models. In addition, testing our model 
on different datasets, acquired with different scans, 
might confirm the robustness and generalization ability 
of this model. Finally, the manual annotations on the 

dataset can vary according to the criteria employed by 
the radiologist performing this task: this inconsistency 
may affect the quality of the ground truth labels, and, 
in turn, the performance of the model. 

In conclusion, this study has demonstrated the 
potential of DL models for accurate medical images 
segmentation and provided important insight into 
future directions for research in this field. 
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Summary: For the accurate diagnosis of retinal disorders, especially glaucoma, precise segmentation of the optic disc (OD) 
and optic cup (OC) is essential. Using state-of-the-art deep learning models for segmentation, our methodology incorporates 
techniques, namely contour data, to improve the overall performance of the model. Fundus images require extra pseudo-label 
representation information because of their high contrast, fuzzy edges, and intensity changes. In supervised techniques, the 
lack of such representation makes segmentation difficult, especially when dealing with fundus pictures that are strongly 
contrasted and have fuzzy borders. Our suggestion is to use a Contour-Aware Attention-based RESU-Net to overcome these 
drawbacks. The model improves edge information by utilizing novel contour techniques to handle different pixel intensities. 
Convolutional Block Attention Module (CBAM) integration sharpens emphasis on key characteristics, making it easier to 
recognize fuzzy borders and manage intensity and low contrast. Evaluation on REFUGE and DRISHTI-GS datasets 
demonstrates superior optic disc and optic cup segmentation performance, showcasing the model's potential across diverse 
clinical scenarios. 
 
Keywords: Contour, Convolutional Base Attention Module (CBAM), Fundus, Glaucoma, Optic cup, Optic disc, 
Segmentation. 
 
 
1. Introduction 
 

Glaucoma stands as the third most prevalent cause 
of irreversible vision loss, following uncorrected 
refractive errors and cataracts. According to research 
published in the literature [1], glaucoma is expected to 
affect 76.0 million people worldwide by 2020 and is 
expected to rise to 111.8 million by 2040. The fundus 
images, and other modalities can be used in 
conjunction with a variety of imaging techniques, 
including magnetic resonance imaging (MRI) and 
optical coherence tomography (OCT), as demonstrated 
by [8], to diagnose glaucoma. The recommended 
method, however, places a strong emphasis on using 
fundus pictures to diagnose glaucoma. These images, 
which were taken using a fundus camera [8], offer a 
thorough perspective of the eye and serve as the basis 
for the suggested methodology for diagnosing 
glaucoma. 

Computer aided segmentation techniques have 
been shown to improve diagnosis speed and accuracy 
Various traditional segmentation methods, such as 
region-based and model-based approaches, have been 
developed for the automated segmentation of the optic 
disc and optic cup in fundus images indicated [6], OD 
and OC segmentation are carried out using  
heuristic-based approaches utilizing. 

Manually developed features such as color, 
gradient, and texture data in the traditional manner 
which is a heuristic approach. However, because they 
are the product of artificial feature creation, these 
attributes range from highly venerated to misguided 
[8]. Consequently, their stability and representational 
abilities will determine how well segmentation 
performs. Deep learning-based techniques particularly 

U-Net [3], and fully convolutional network (FCN) [8], 
have been effectively used in this sector in recent years 
and perform exceptionally well when compared to 
traditional methods. 

In particular, U-Net and other encoder-decoder 
based models have been widely used for medical 
image segmentation. The U-Net family of variants, 
which includes Efficient-UNet, Dense-UNet, 
Attention-UNet, and RES-UNet, has been extensively 
used in numerous studies [8]. 

Due to the complexity of fundus images and the 
intensity similarity between the surroundings and the 
optic disc and optic cup regions segmentation becomes 
challenging making it difficult to achieve accurate 
results [9]. 

Unless we specifically focus on the required 
regions of interest deep learning models employ 
various strategies such as attention mechanism 
incorporation, ROI extraction, and localization of the 
optic disc. Several approaches [10], have shown 
encouraging results in the segmentation of the optic 
disc and optic cup from fundus images. 

Particularly, for addressing the high redundancy in 
fundus images, the incorporation of attention 
mechanisms [11-13], has demonstrated potential in 
enhancing the performance of CNN-based glaucoma 
detection [11-13]. 

Some of the approach follow region of interest 
extraction (ROI) by cropping the input images and 
focus on the required regions. Even if this approach is 
successful has its own limitation due to ROIs are often 
defined based on specific characteristics or features in 
an image. If these features are not robust or stable 
under different conditions, the ROI selection may 
become unreliable [14]. The other approach they 
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follow is localization of optic disc before segmentation 
[2, 3], this approach has limitation regarding retinal 
images can vary in quality, resolution, and clarity. 

Images with low quality or artifacts may pose 
challenges in accurately localizing the optic disc. In 
such types of approach, we will face the model 
generalizability issues for different datasets and the 
segmentation result for the optic cup is highly rely on 
the accurate segmentation of optic disc. Unlike the 
previous approach, we adopt a strategy that involves 
using a traditional edge-based approach as an 
additional source of information, without performing 
preprocessing segmentation tasks to get ROI extraction 
or OD localization. This approach allows us to 
concentrate on the necessary regions by implementing 
powerful image processing algorithms specifically 
designed for tasks like edge and region extraction. 

We propose a hybrid model that combines the 
edge-based approach with a deep learning model. In 
the edge-based approach, we have implemented a 
contour mechanism to guide region extraction which 
has had a positive impact on our feature  
representation [9]. 

Most of the listed approach are follow either  
edge-based approach or deep learning approach. We 
try to hybrid the edge-based model with the deep 
leaning model. Because, edge-based model gives us 
clear and strong cues for guidance of the required 
regions they are very powerful in medical image 
processing [9]. We use a technique of contour for 
region guidance to feature representation to the best of 
our understanding, no one has previously used contour 
aware attention-guided Res-UNet to detect glaucoma 
in fundus images to segment them accurately and 
merging both active contour and attention information 
for glaucoma disorders and artifacts. Contours provide 
a concise representation of object boundaries, which 
can aid in image understanding and annotation. 

By incorporating contour information, algorithms 
can infer spatial relationships between objects, localize 

objects of interest, or generate annotations that 
facilitate human understanding or automated 
processing. Incorporating contour information allows 
for a more comprehensive analysis of image data and 
improves the accuracy, robustness, and efficiency of 
various computer vision and image processing tasks 
[9]. Our work makes the following contributions: 
1. We integrate intensity in homogeneity by 

employing contour methods to address variations 
in pixel intensities across different regions of the 
image; 

2. We proposed a guided contour module to enhance 
edge preservation, where the contour information 
contributes supplementary edge details to the 
feature map; 

3. We propose a hybrid architecture, merging 
Contour and Attention Gates with a Res-UNet 
backbone, to prioritize the activation of relevant 
regions in the feature maps; 

4. We thoroughly test our methods on the REFUGE 
and DRISHTI-GS datasets, outperforming both 
baseline models and currently available cutting-
edge segmentation methods. 

 
 

2. Proposed Method 
 

Various methods described in the introduction 
parts has their own limitation while performing the 
task of optic disc and optic cup segmentation. To 
alleviate those mentioned problems, we proposed a 
novel approach contour-aware attention-based  
RESU-Net. We modify the architecture presented by 
[15], which takes the advantages of both U-Net and 
RES-Net model. Before discussing the general 
architecture first, we present the proposed encoder 
model compared with the previous approach described 
in Fig. 1. 

 
 𝑥𝑥𝑥𝑥 + 1 =  𝑓𝑓(𝑥𝑥1) + 𝑥𝑥𝑥𝑥 (1) 

 
 

 
 

Fig. 1. Comparison Previous residual unit and the proposed CARES-UNet. 
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In case A) as shown in Fig. 1 the output is xl+1 the 
previous residual unit with identity mapping. The input 
given are xl which is the original images and the 
modified residual block as a function f(x+1). 

In case B) as shown in Fig. 1 there is incorporation 
of contour as (Xc) in addition to the original images 
contours are given to the residual block before 
performing the identity mapping. 
 

 𝑋𝑋𝑋𝑋(𝑜𝑜𝑜𝑜𝑜𝑜) + 1 =  𝑓𝑓(𝑥𝑥1) + 𝑋𝑋𝑋𝑋 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 
+𝑋𝑋𝑋𝑋(𝑜𝑜𝑜𝑜𝑜𝑜) + 1 (2) 

 
The contour images output before giving to the 

next residual block is inputs are the residual blocks as 
function f(xl+1), the contour images (Xc), the output 
of original images as described in equation four 
Xo(out)+1 and CBAM. 

As shown in Fig. 2 the proposed model  
contour-guided attention based RESU-Net model 
before giving the inputs to the next residual blocks it 
accepts both original images and contour images then 
fused with CBAM. 
 

 𝑥𝑥𝑥𝑥(𝑜𝑜𝑜𝑜𝑜𝑜) + 1 =  𝑓𝑓(𝑥𝑥𝑥𝑥 + 1) + 𝑋𝑋𝑋𝑋 + 
+𝑋𝑋𝑋𝑋(𝑜𝑜𝑜𝑜𝑜𝑜) + 1 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (3) 

 
 

 
 

Fig. 2. The Proposed Model. 
 
 

The original images output before giving to the 
next residual block is inputs are the residual blocks as 
function f(xl+1), the original images (Xo), the output 
of contour as described in equation (3) xc(out), and 
CBAM. We proceed these steps in each of the encoder 
blocks to strength our model for extracting  
better features. 

 

Attention Incorporation 
Following the concatenation of original features 

and contour image features, we applied CBAM [16]. 
Across these features 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧. In addition to the 
aforementioned components, our study also focuses on 
incorporating attention mechanisms into the 
architecture design. Extensive research has been 
conducted on the significance of attention [16], which 
not only helps determine areas of focus but also 
enhances the representation of relevant features. Our 
objective is to enhance the network’s representational 
power by leveraging attention processes that prioritize 
vital structure while subduing unnecessary. 

To achieve this, channel and spatial axes are two 
significant dimensions that this module enables us to 
emphasize. The CBAM module effectively recognizes 
essential features by applying convolution techniques, 
which combine cross-channel and spatial information. 
Each branch of the network may learn what and where 
to pay attention to in the channel and spatial axes by 
applying the channel and spatial attention modules ule 
substantially enhances the information flow inside the 
network by learning which information to give 
attention or suppress. The network’s ability to acquire 
and represent significant features is ultimately 
improved by this improvement in information flow, 
which raises both the network’s overall performance 
and accuracy. Feature map is given as input to the 
CBAM it follows a sequential process to refer both 
channel and spatial attention map. 
 

 𝑓𝑓′  =  𝑀𝑀𝑀𝑀(𝑓𝑓′)′ ⊗′ 𝑓𝑓, 𝑓𝑓 =  𝑀𝑀𝑀𝑀(𝑓𝑓′)′  ⊗′ 𝑓𝑓′ (4) 
 
Contour Extraction 

Generation of contours Contour-based image 
segmentation methods work by utilizing edge or 
contour information to identify and delineate object 
boundaries [9]. Here, is a general overview of the 
process: Edge Detection: The first step is to detect 
edges in the image using edge detection algorithms 
such as Canny, Sobel, or LoG. These algorithms 
analyze pixel intensity gradients to identify significant 
changes in intensity that correspond to object 
boundaries. 

Contour Extraction: Once the edges are detected, 
contour extraction algorithms are used to obtain 
continuous curves or boundaries that represent the 
object contours. This can be achieved through 
techniques like the Marching Squares algorithm or the 
Watershed algorithm. 

Contour Refinement: Sometimes, the extracted 
contours might contain noise or inaccuracies. Contour 
refinement techniques are applied to enhance the 
extracted boundaries, smooth out irregularities, and 
increase the overall quality of the contours. This step 
helps to ensure more accurate segmentation. 

Segmentation using Contours: The extracted and 
refined contours are then utilized as the basis for 
segmentation. Various segmentation algorithms can be 
employed, such as region-growing, region-based level 
set, or active contour models (snakes), to segment the 
image based on the identified contours. 



6th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2024),  
17-19 April 2024, Funchal (Madeira Island), Portugal 

75 

To extract the contour, we follow the following 
steps first we used an openCV to read an input image 
then we resize the image accordingly. After resizing 
the image, we have converted the image into gray scale 
after that we add Gaussian Blur then we extract using 
canny (10,100) get structuring element. Finally, we 
add the dilation operation to the edged image then we 
find and draw the contours. Finally, refine contour for 
both the datasets REFUGE and DRISHTI-GS. For 
DRISHTI-GS for a total of 168 augmented images we 
extract contour information. Accordingly, for Refuge 
dataset we extract a total of 1200 contour images. 
 
 

 
 

Fig. 3. Extracted Contour information from both datasets.  
(a) Indicates original images; (b) Indicates the ground truth, 

and (c) Indicates the extracted contour information. 
 
 

3. Dataset and Experiment Setting 
 

In this study, two openly accessible datasets 
REFUGE and DRISHTI-GS where utilized. REFUGE 
datasets are referenced in [17], a total of 1200 images 
with the ground truth information's all the images are 
captured using fundus cameras validated by 
professionals no biased information's mainly used for 
glaucoma identification purposed. We have been used 
960 images for training and 240 images for validation 
and testing purpose. In addition, to the originals images 
the pseudo-label information's by extracting the 
contour information's is implemented. 

The other dataset used in this study is  
DRISHTI-GS [18], these datasets consist of  
50 images with ground truth information. We apply the 
data augmentation techniques of horizontal flip, 
vertical flip, and rotate to enlarge our dataset size 
making them a total of 268 images. Among them we 
have been used 200 images for training and 68 images 
are used for validation and testing purpose. 

For the implementation purpose the PyTorch 
1.13.1 DL library and python 3.8.16 performing 
language were utilized for the experiment. The 
machine used for the experiments was an included four 
NVIDIA GeForce RTX 3080Ti GPUs with 6 GB of 
RAM. With Cuda version 11.7 of 12th generation  
of intel(R). 

The performance evaluation metrics used 
throughout the explement is Dice and IOU how we 
compute it described below as an equation. 

 
 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  2𝑇𝑇𝑇𝑇 2𝑇𝑇𝑇𝑇⁄ + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹, (5) 

 

 𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎, 𝑏𝑏)  =  
(𝑎𝑎 ∩ 𝑏𝑏)

𝑎𝑎
+ (𝑏𝑏) − (𝑎𝑎 ∩ 𝑏𝑏) (6) 

 
 

4. Result and Analysis 
 

We perform extensive experiment and compare 
with the SOTA model like GDSeg-Net [4], Attention  
U-Net [2], Deep ResU-Net [15]. Systematically test 
and evaluate the mentioned model to obtain their 
predicted equivalent mask results. During the 
experimentation, the same data split strategy is applied 
to divide the data into training, validation, and test sets. 
All evaluated models utilize the same dataset, with 
consistent data sizes and an equal number of epochs. 

The results presented in Fig. 4 showcase the optic 
disc (OD) segmentation performance using the 
DRISHTI-GS dataset. In this experiment, we with the 
same data split strategy, we conducted a comparative 
analysis of our proposed method against other 
prominent CNN-based approaches, including Deep 
RES U-Net [15], Attention U-Net [13], EARDS-Net 
[6], and GDCSeg-Net [4]. Table 1 showcases the 
comparative results on DRISHTI-GS datasets for optic 
disc segmentation. As depicted in Fig. 4, Segmentation 
results of OD by the proposed model are illustrated in 
Fig. 4. When utilizing the same input images and 
labeled images denoted as (a) and (b), respectively, the 
predicted masks. 

 
 

Table 1. Performance Result of OD  
for DRISHTI-GS dataset. 

 
No.  Model  Dice IOU 

1 U-Net [6] 0.9642  0.9319 
2 Efficient-UNet [6] 0.9715  0.9447 
3 EARDS-Net [6] 0.974  0.949 
4 GDCSeg-Net [4] 0.974  0.95 
5 Ours 0.982  0.961 

 
 

Provided by different models are not identical. 
Some of the compared models yield entirely different 
predictions for a given input. However, when we 
examine the last two models, their results are slightly 
similar. However, our proposed model produces a 
superior optic disc (OD) prediction, especially for the 
image type with high contrast depicted in the Fig. 4, 
due to the incorporation of supportive information 
such as contour to learn better features. This result is 
noteworthy when compared with other state-of-the-art 
(SOTA) models. The comparison highlights that our 
proposed CARES U-Net demonstrates superior 

Performance compared to the aforementioned  
U-Net architecture based model Specifically, as shown 
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in Table 1, in addition sample of the result of predicted 
OD segmentation mask as presented in Fig. 4. 

Fig. 5 result show that the joint OD and OC 
segmentation result of SOTA model and the proposed 
model. label (a), shows the original image of REFUGE 
dataset, label (b) shows the ground truth information of 
the original images, and label(c) shows the predicted 

segmented result. As shown in the figures specially in 
highly contrast images the other models are not 
performing well with this regard our model attains 
good segmentation result. For the normal images input 
given the result are very competitive as shown in the 
Fig. 5. Our proposed model capable to learn region 
based information using pseudo-label information. 

 
 

 
 

Fig. 4. Result of OD for sample image dataset in DRISHTI-GS. 
 
 

 
 

Fig. 5. Result of REFUGE for sample image dataset. 
 
 

The table result shows the comparison among 
SOTA in DRISHTI-GS dataset our proposed model 
yields better result in optic disc segmentation. We also 
presented in Fig. 4 for more illustration of the 
segmentation result. 

The incorporation of contour information used as a 
supportive information and each residual block fused 
with CBAM yields better feature extraction. 

5. Discussion 
 

The complexity of fundus images, particularly in 
high contrast scenarios and with fuzzy borders, poses 
challenges for accurate segmentation of optic disc and 
optic cup regions. Our proposed approach leverages 
pseudo-label information to enhance performance, 
providing valuable support for region-based and  
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edge-based information. The results, evaluated using 
IOU and Dice on both REFUGE and DRSHT-GS 
datasets, are presented in Table 1 and accompanying 
figures. 

The incorporation of pseudo-label information has 
a notable impact on performance improvement. As 
indicated in Table 1, the proposed model achieved an 
increase of 0.008 % for Dice and 0.011 % for IOU. 

As stated in Fig. 5 the proposed model attained 
accurate segmentation result in REFUGE datasets. The 
input image are joint optic disc and optic cup regions 
the outputs also show are joint segmentation result. For 
such types of images calculating the cup to disc ratio is 
difficult so, further strategies must be used to get the 
separate result for both required regions. 

Additionally, integrating contour information and 
CBAM proved to be beneficial, contributing to 
significant performance improvements. However, 
these enhancements did not completely solve 
Challenges associated with fuzzy borders and  
high-contrast images, as observed in optic cup 
segmentation. The impact on optic cup segmentation 
did not result in improved outcomes. 

Further, we are doing the ablation studies to clearly 
show an impact of the corporate modules in the  
base-line model performance. 

In order to do that we have been checked the result 
of the base line model without adding both contour and 
CBAM. After doing so we proceed by adding only 
contour information to check the performance change 
on the base-line model. Finally, adding both contour 
and CBAM assessing the impact of the base-line 
model. 

According to the overall abilities studies, the base 
line model performed better in the optic disc and optic 
cup segmentation tasks when contour and CBAM were 
integrated. However, further work needs to be done to 
raise the performance improvement level in optic cup 
segmentation. It is recommended to utilize a robust 
algorithm for extracting contour information. 
 
 
6. Conclusions 
 

This paper introduces CARES-UNet, a supervised 
framework for image representation learning in 
segmentation. Utilizing a contour-aware module, the 
proposed method obtains region-based representations 
of labeled fundus images. Additionally, the inclusion 
of the CBAM module enhances critical region 
identification for each encoder model, addressing 
challenges in highly contrasted and fuzzy-bordered 
images. 

Experimental findings show that incorporating 
contour details significantly improves model 
performance, especially for images with high contrast 
and fuzzy borders. The suggested approach is tested on 
two publicly available fundus image datasets, 
REFUGE and DRISHTI-GS, showcasing its efficacy 
in mitigating representation biases and improving the 
supervised segmentation of the required regions. 
Future research should focus on investigating the 

stability of the proposed approach and improving 
segmentation accuracy by integrating deep learning 
techniques with clinical data. 

Further exploration is recommended for refining 
optic cup segmentation, exploring alternative 
modalities, and generalizing across various glaucoma 
datasets like ACRIMA and RIM-ONE. 
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Summary: This paper presents a novel approach to reproduce unsorted English alphabets, emphasizing laryngeal and glottal 
involvement over traditional articulatory gestures. With 6-11 % of the global population facing speech disorders, impacting 
natural communication, the study explored LSTMs, Random Forests, and RNN models initially, yielding less than satisfactory 
results. Subsequently, an Artificial Neural Network (ANN) Multi-Class Classifier demonstrated remarkable accuracy, 
exceeding 88 %, correctly predicting alphabets in 9 out of 10 instances. The research includes a self-made concise phonetic 
dictionary with 42 samples, containing phonetic combinations of Non-Articulatory English alphabets, prepared using Fast 
Fourier Transform. Also has an interactive feature where the model predicts the alphabets given a few features and also 
provides voice outputs with Google's Text-to-Speech. Despite dataset constraints, the ANN proves efficient in predicting  
non-articulatory alphabet sounds, showing potential for practical applications, especially in aiding individuals with speech 
disabilities and addressing a significant global gap in supporting speech disorders. 
 
Keywords: Artificial neural networks, Fourier transform, Google text-to-speech, Machine learning, Phonetics,  
Speech synthesis. 
 
 
1. Introduction 
 

The production of speech looks at the interaction of 
different vocal organs, for example the lips, tongue and 
teeth, to produce particular sounds. Speech production 
depends on the combination of phonemes. Unlike 
articulatory alphabets that involve the movement or 
contact of speech organs (articulators),  
non-articulatory alphabets primarily rely on the larynx 
and glottis, in some cases nasal as well in their 
production [1]. Phonemes are combined to form 
syllables, words, and ultimately, complete utterances. 
Phoneme combinations are the smallest units of sound 
in a language that can distinguish words from one 
another. A subset of the English alphabet, whose 
pronunciation is based on the combination of 
phonemes altogether. Articulatory Phonetics utilizes 
tools like real-time MRI (Magnetic Resonance 
Imaging) to observe vocal tract changes during speech, 
while more abstract methods such as Ultrasound 
Tongue Imaging and Palatography provide insights 
into tongue and palate movements for a comprehensive 
analysis of speech articulation [2]. The complexity of 
speech, influenced by factors such as accent, age, and 
health poses challenges for accuracy. Phonetic 
research plays a crucial role in refining speech 
technology, enabling machines to understand and 
produce nuanced variations in speech sounds [3]. 
English spellings often fail to consistently depict the 
diversity of pronunciation, resulting in variations even 
within the same word due to different dialects.  

This highlights the need for a systematic and 
formal approach and this is where phonetics plays its 

role. The importance of phonetics, which when held in 
comparison with abstract sound units is crucial as it 
provides a more detailed and precise analysis of speech 
sounds, hence the English alphabet encompassing  
26 letters, are typically studied in terms of phonetics 
for a reliable and undeterred understanding [4]. 
However, acoustic similarity is also one of the 
important variables to explain the confusions of speech 
sounds. Vowels are characterised by sustained voicing 
and lack of constriction whereas consonants are 
characterised by vocal tract constriction and 
aperiodicity [5]. Different acoustic-phonetic 
measurements such as voiced and unvoiced 
parameters, articulatory features, vowel offset and 
onset points, nasalization etc. are the necessities for 
phoneme recognition, which is the fundamental unit of 
speech with defined numbers in every language. 
Voiced speech arises from vocal tract vibration, while 
unvoiced speech stems from turbulent airflow due to 
vocal tract constriction [6]. Alphabets like /H/ and /O/, 
whose pronunciation are least dependent on mouth 
movements, are solely dependent on airflow through 
the larynx. Special cases, such as /M/ and /N/, which 
sound very similar if not pronounced well, are difficult 
to reproduce accurately without considering nasal 
involvements. In the case of dental fricatives like /F/, 
require a combined effort of teeth and lip for 
production. These cases underscore the significance of 
special movements and the substantial involvement of 
the larynx and glottis for accurate speech reproduction. 

The emergence of Deep Neural Networks, notably 
Time-delay Neural Networks (TDNNs), marked a 
paradigm shift in speech recognition systems due to 
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their ability to classify speech patterns (such as 
phonemes) in a time-invariant manner, akin to human 
speech perception. Leveraging techniques like 
statistical methods, hybrid approaches, RNNs, K 
means, neural networks, and vector quantization, 
classification algorithms yielded significant 
performance gains with global optimization of ANNs 
and sequence learning [7]. Precise pronunciation of 
non-articulatory alphabets depends on the combination 
of known phonemes to produce the former. ANN 
model is used to train the dictionary dataset. Since 
there are not many unsorted alphabet samples, 
stratified cross validation is performed to further train 
the model. 

The paper explores a unique perspective on English 
alphabets offering a classification that reveals how the 
production of precise pronunciation depends on the 
combination of phonemes. Hence, the present work 
claims the following achievements: 

• A phonetic method for accessing an 
underrepresented category in English; 

• A highly accurate and reliable ML algorithm 
through Neural Networks, which to the best of 
our knowledge, has not been used in speech 
production techniques; 

• A light and minimal dictionary of Phonetic 
Combinations; 

• Predictive model with an Interactive User 
Experience. 

The paper concludes with a comprehensive 
implementation, demonstrating the accurate 
reproduction of speech sounds, marking a significant 
stride toward resolving the targeted problem. The 
overall workflow with the technical details is 
explained in depth in the methodology (Section 2). 
Further, this system is tested and measured with 
performance metrics with visuals and snippets for 
every step (Section 3). The impact of this solution with 
its applications are discussed in Section 4. 

 
 
2. Methodology 
 

This work revolves around identification and 
careful classification of Non-Articulatory English 
Alphabets. Following this, led to the development of a 
concise Phonetic dictionary. Keeping this as a dataset, 
the ML model powered by Artificial Neural Networks 
is trained over 100 epochs. Post training, the model is 
capable of accurately predicting alphabets by 
accepting user inputs. The identified alphabet is 
pronounced clearly, leveraging Google's Text-to 
Speech algorithm. Each process is explained in detail 
in the following paras. The methodology flow can be 
found in Fig. 1. 
 
 
2.1. Speech Sound Production Model 
 

The following sections explains in detail the 
processes followed in the identification and 

development of a phonetic model for the 
underrepresented alphabets in the English language. 
 
 
2.1.1. Identification of Unsorted English Alphabets 
 

Initial phase of the research was regarding the 
production of speech sounds, particularly within the 
realms of phonetics and speech production. 
Concentration was on gaining a comprehensive 
understanding of how various alphabets are produced, 
focusing particularly on the involvement of the larynx 
and glottis in their generation. A pivotal aspect of this 
investigation involved categorising certain  
alphabets – B, F, H, M, N, O and P as non-articulatory, 
based on the substantial roles played by the airflow 
within the larynx and glottis in their pronunciation. 
This classification provided valuable insights into the 
nuanced relationship between the precise 
pronunciation of these alphabets and the coordinated 
movements of the vocal cord folds and the  
glottal space. 
 
 

 
 

Fig. 1. Methodology Flow. 
 
 
2.1.2. Categorization of Non-articulatory English  
          Alphabets 
 

After identifying a distinct subset of English 
alphabets, it is observed that their pronunciation is 
directly linked to the conservative regulation of oral 
cavity movements. This unique characteristic sets 
them apart from their counterparts, which 
predominantly rely on the larynx for pronunciation. 
 
 
2.1.3. Development of Phonetic Dictionary 
 

Following a new reliable approach leading to the 
development of a comprehensive phonetic dictionary 
encompassing combinations that accurately replicate 
the sounds of the identified non-articulatory alphabet. 
Using the concepts of Fast Fourier Transform, a  
self-made database encompassing non-articulatory 
alphabets represented by their corresponding known 
phonetic combinations was created and the same 
shown in Table 1. 
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The phonetic dictionary (See Table 1), comprises a 
concise dataset of 42 samples and serves as the training 
set for Machine Learning Model, discussed in  
Section 2.2. 
 
 

Table 1. Phonetic Dictionary. 
 

F M N O P B H 
f m n o p b ha 

ph mm nn oo pp bb he 
fr mb ng oe ph bh hi 
ff mn nk ow pf pb ho 
pf mp kn au pl mb hu 
lf hm gn aw pr nb  
ft       

 
 
2.2. Machine Learning Model 
 

LSTMs can be used to model the temporal 
dependencies in the speech sounds production process. 
The sequential nature of phonetic data can be 
effectively captured by LSTM networks, making them 
suitable for capturing the intricate relationships 
between different phonetic elements over time. 
However, in this scenario LSTMs are prone to 
overfitting due to the limited training data set setting a 
drawback overall [7]. 

Random Forests, considered as "black box" 
models, make it difficult to interpret the  
decision-making process. Understanding why the 
model makes a specific prediction can be challenging, 
which might be crucial especially in this application 
and they can overfit to outliers if not appropriately 
tuned [7]. 

RNNs could be used to model the sequential nature 
of phonetic data. They have the capability to process 
input sequences and maintain hidden states that 
capture temporal information. However, compared to 
LSTMs, they may struggle with long-term 
dependencies which is crucial for the precise 
pronunciation of the combinational phonemes [7]. 

Therefore, the model utilises Artificial Neural 
Networks (ANN) with TensorFlow libraries, a 
sophisticated class of ML models that consists of 
interconnected nodes organised into layers, including 
the input layer, hidden layers, and the output layer. 

The paper focuses on the application of Artificial 
Neural Networks (ANN) to a Multi-Class 
Classification task. The main objective is to leverage 
the network’s capabilities to predict the 7 class labels 
(F, M, N, O, P, B, H) based on a set of features and 
hence generate speech output. 
 
 
2.2.1. ANN Model Design 
 

A sequential model with 3 dense layers is leveraged 
for this task. 

• The First Layer or the Input Layer is a fully 
connected dense layer with 64 units and uses 

ReLU (Rectified Linear Unit) Activation 
function. This function introduces non-linearities 
to the model, allowing it to learn complex 
patterns and relationships in the data. 

• Following the input layer, there is a dropout layer 
with a rate of 0.5 which helps prevent overfitting 
by randomly setting a fraction of input units to 
zero during training. This step is crucial, 
considering the minimal database. 

• Following the drop-out there is a Second Dense 
Layer with 32 units with ReLU activation. 

• Following the Second Hidden Layer comes the 
Output Layer which utilises the robust SoftMax 
function, perfectly suited for multi-class 
predictions. The number of output neurons is 
adjusted so as to match the precise number of 
classes within the dataset. Throughout the 
training process, the model adjusts weights and 
biases consecutively, aiming to discern and 
predict the non-articulatory alphabet based on 
phonemic combinations. 

 
 
2.2.2. Data Preparation 
 

Next, the features and labels are defined as arrays 
and encoded using a LabelEncoder for optimal 
processing. Furthermore, a StandardScaler is 
employed to scale features for improved training. 
These steps ensure that the data is prepared in a 
desirable format for the neural network. 
 
 
2.3. Model Evaluation 
 

The performance of Phonetic-ANN model was 
rigorously evaluated implementing the 
StratifiedKFold cross-validation with five splits. This 
step helps train the model with diverse data subsets and 
gain valuable insights into its generalizability. Using 
ADAM as the optimizer, the model was trained for  
100 epochs following the cross-validation which 
further refines its performance [7]. The final accuracy 
in the upwards of 88 % serves as a testament to the 
model’s effectiveness to tackle classification tasks. 

 
 

2.3.1. Interactive Model Interface 
 

In addition to the core function of prediction, the 
code allows users to interact with the model by 
providing new data through an innovative interactive 
element. Asking few user inputs like 
‘Vowel/Consonant’, ‘Word/Phoneme Combination’, 
‘Lip Rounding’, ‘Voiced/Voiceless’, the provided data 
is scaled and encoded before being fed to the neural 
network, which enables real-time application and 
immediate feedback. The predicted class is presented, 
offering further exploration and feedback. To enhance 
the code further, integrating the gTTS library to 
generate text-to-speech audio based on the predicted 
class label. This enhances accessibility to the users by 
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allowing them to hear the predicted class label, 
improving overall clarity and interaction. 
 
 
2.3.2. Deep Analysis of Model Performance 
 

The model was further analysed deeply to generate 
a comprehensive classification report and a confusion 
matrix (See Fig. 6), providing deeper insights into the 
model’s performance across different classes, 
including identifying potential biases or 
misclassifications. Also plots a confusion matrix and a 
ROC curve for visualising the performance of the 
model, creates a pair plot and a count plot for analysing 
label distribution of predicted labels for better 
understanding. 

Despite the limited dataset (See Table 1), our 
primary objective was to achieve high accuracy, 
emphasising the efficiency and effectiveness of our 
code. Hence, through rigorous implementation of 
Artificial Neural Networks (ANN) in a Multi-Class 
Classification task, this model strategically leveraged 
the network's capabilities to accurately predict the  
7 class labels based on a comprehensive set of features 
leading to a deep analysis of its performance  
and accuracy. 
 
 
3. Results 
 

Understanding relationship between pairs of 
features in a dataset, particularly for the relationships 
between multiple variables simultaneously an 
insightful plot called Pair Plot (See Fig. 2), also known 
as a pairs plot or scatterplot matrix, was used. Essential 
for detecting outliers, understanding data distributions, 
and guiding feature selection and dimensionality 
reduction during preprocessing and feature 
understanding. Aids in feature selection, potential 
transformations and guiding dimensionality reduction 
techniques. Each scatter plot represents a pair of 
features, and the points are colour-coded based on the 
true labels of the data. The diagonal plots show the 
distribution of individual features. 

The subplot in the upper left corner (See Fig. 2), the 
X-Axis is labelled "Feature 1" and the Y-Axis is 
labelled "Feature 2". The data points in this subplot 
show that there is a positive correlation between 
Feature 1 and Feature 2. This means that as the value 
of Feature 1 increases, the value of Feature 2 also tends 
to increase. The subplot in the lower right corner, the 
X-Axis is labelled "Feature 3" and the Y-Axis is 
labelled "Feature 4". The data points in this subplot 
show that there is a weak negative correlation between 
Feature 3 and Feature 4. This means that as the value 
of Feature 3 increases, the value of Feature 4 tends to 
decrease, but the relationship is not very strong. 

While comparing different optimizers like 
Stochastic Gradient Descent (SGD), Root Mean 
Square Propagation (RMSProp), Adaptive Gradient 
Algorithm (Adagrad), Adaptive Moment Estimation 
(Adam), as well as different size of neural architecture, 

epochs and batch size, the aforesaid architecture (refer 
Section 2) was found to be the best fit with 100 epochs. 
However, it was observed that the accuracy did not 
show substantial development with other combinations 
of architecture. 
 
 

 
 

Fig. 2. Pair Plot visualising pairwise relation  
between Features. 

 
 

Analysing the previous approaches, LSTMs have 
74 % accuracy indicating the model's effectiveness in 
predicting non-articulatory English alphabets based on 
phonetic combinations, which is the least. Due to the 
limited dataset the accuracy of the model is 
unsatisfactory. RNN model achieved a 78 % accuracy. 
Random Forest model performed relatively well in 
making predictions based on the provided dataset 
featuring an accuracy of 83 % overall. The ANN 
Multi-class classifier outperforms its predecessors 
with a mighty accuracy score in the excess of 88 % as 
seen in Fig. 3. 
 
 

 
 

Fig. 3. Bar Graph comparing the Accuracies  
of various models. 

 
 

The code being trained over 100 epochs where the 
lines at the top show that the training process reached 
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the desired 100 iterations. An epoch is one iteration 
over the entire training dataset. The lines in the middle 
show the accuracy and loss scores for each epoch. As 
the training progressed, the accuracy score increased 
and the loss score decreased, which indicates that the 
model was learning to make better predictions. The 
bottom line shows the final accuracy score, which  
was 88.1 %. 

After training the model on the phonetic dictionary 
dataset comprising 42 samples of non-articulatory 
English alphabets, there has been an impressive 
accuracy of 88.1 %. This indicates that our model has 
successfully learned to predict the non-articulatory 
alphabet based on phonetic combinations, showcasing 
its robustness even with a limited dataset. 

Fig. 4 shows the interactive experience, allowing 
users to type in features of the phoneme combination 
to display the predicted alphabet. Further, the accurate 
voice output generated with Google’s Text-to-Speech 
algorithm can be seen in Fig. 4. 

The example shown in Fig. 4 was tested for the 
sound ‘Oh’, the inputs are given as: 
1. Vowel (0) or Consonant (1) - 0 (Oh sounds like the 

vowel O); 
2. Word or Phoneme Combination – 158  

(15 representing alphabet /O/, 8 representing 
alphabet /H/); 

3. Lip Rounding (0 to 2 with 0 being least) – 2; 
4. Voiced (0) or Voiceless (1) – 0. 
 
 

 
 

Fig. 4. Interactive UI accepting feature inputs, in turn 
predicting the alphabet with Voice Output. 

 
 

The ROC curve shown (See Fig. 5) illustrates the 
performance of a classifier in a binary classification 
task. Each line represents the ROC curve for one of the 
7 classes in the dataset. 

 
 

 
 

Fig. 5. ROC Curve. 
 

ROC curves for all seven classes have high AUCs 
implying that the model is performing well at 
classifying all of the classes. The ROC curve for class 
1 has the highest AUC, at 1.00, which means that the 
model is perfectly classifying all of the cases in class 
1. The ROC curve for classes F, N, P and H has the 
lowest AUC, at 0.97, which is still impressive and is in 
the close vicinity of 1. 

The classification report (See Fig. 6a) provides a 
detailed assessment of how well the model performs 
for each class. The report is organised by class, and the 
metrics are computed for each class separately. 

For instance, in class ‘0’ the precision is 0.75, recall 
is 1.00, and F1-score is 0.82, the support indicates that 
there are 6 instances of class '0' in the dataset. The 
accuracy, macro avg, and weighted avg provide overall 
measures of model performance across all classes. In 
the Confusion Matrix (See Fig. 6b), each row 
represents the actual labels of the data points, each 
column represents the predicted labels and each cell in 
the matrix indicates the count of instances for a 
particular combination of true and predicted labels. For 
example, the cell (0,4) represents instances where the 
true label is 'B' but the model predicted 'N’. 

While there has been research into speech synthesis 
and phonetic classification, there hasn't been extensive 
work specifically targeting the reproduction of non-
articulatory English alphabets. The proposed approach 
of using multi-class classification could open up new 
avenues of research in this area. Neural networks have 
indeed been widely used in various areas of natural 
language processing, including speech recognition and 
synthesis. The effectiveness of this approach would 
likely depend on the quality of the training data and the 
architecture of the neural network model [8]. 
 
 

 
(a) 

 

 
 

Fig. 6. (a) Classification Report; (b) Confusion Matrix. 
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The development of a minimal dictionary of 
phonetic combinations is an interesting approach, 
especially for non-articulatory alphabets where 
traditional phonetic rules may not apply. This aspect 
could be seen as an attempt to streamline the process 
and reduce complexity in reproducing these alphabets. 
Incorporating an interactive user experience into the 
predictive model adds a practical dimension to the 
research. This could enhance usability and 
accessibility, making the system more user-friendly 
and applicable in real-world scenarios. Overall, there 
are no pre-existing methods to address the challenge of 
reproducing non-articulatory English alphabets which 
combines elements of machine learning, linguistics, 
and user experience design. 
 
 
4. Conclusions 
 

This research marks a significant advancement in 
the comprehension and application of phonetics and 
speech production, particularly focusing on the 
interplay between laryngeal and oral cavity 
movements in generating diverse alphabets. The 
identification of a distinct unsorted English alphabet, 
development of a novel phonetic dictionary, and 
implementation of Artificial Neural Networks (ANN) 
have led to the creation of an effective  
classification model. 

The use of TensorFlow libraries, a thoughtful 
architecture with ReLU activation, dropout layers, and 
SoftMax output demonstrates meticulous optimization 
despite the limited dataset. The inclusion of an 
interactive element in the code facilitates real-time 
user interaction and immediate feedback, while the 
integration of gTTS for Text-to-Speech audio 
enhances accessibility. Thorough analysis through 
classification reports, confusion matrices, ROC curves, 
and label distribution visualisations provides insight 
into the model's performance. Despite challenges with 
the dataset, achieving an accuracy of over 88 % 
underscores the code's robustness in addressing multi-
class classification, emphasising its practicality in 
speech sound production research. Previous 
approaches with LSTM model (74 % accuracy), RNN 
model (78 % Accuracy) and, though competitive, 

Random Forest Model (83 % Accuracy) reinforce the 
superior performance of our Phonetic-ANN Model. 

Therefore, this paper showcases potential for 
practical use, especially in aiding individuals with 
speech disabilities, underdeveloped articulators, 
strokes, hence filling a considerable global gap in 
supporting those with speech disorders. With the 
careful amalgamation of technology with phonetics 
fronted by an interactive User Experience, fosters a 
deeper understanding and thereby facilitating the 
acquisition of extensive knowledge. 
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Summary: The rising number of total knee arthroplasty (TKA) revisions combined with the inferior outcomes compared to 
the primary TKA highlights the critical need for early detection of primary TKA failure. The present work proposes an  
image-based deep learning (DL) model to automatically detect TKA failure from radiographs by applying a transfer learning 
approach from a previously developed hip prosthesis failure DL model. The dataset comprised 475 radiographs from 120 failed 
and 105 non-failed TKA patients, and were subdivided in training, validation, and test sets (236, 100 and 139, respectively). 
Following preprocessing phases, the images were analyzed using a pretrained DenseNet169 and applying transfer learning 
fine-tuning algorithms. In the test set, an accuracy of 0.83, sensitivity of 0.89, specificity of 0.77, F1 score of 0.84 and area 
under the curve (AUC) of 0.91 were achieved, demonstrating the potentialities of the developed DL approach in automatically 
detecting TKA failure from plain radiographs. 
 
Keywords: Total knee arthroplasty, Prosthesis revision, Artificial intelligence, Predictive modeling, Image classification. 
 
 
1. Introduction 
 

Total knee arthroplasty (TKA) is the most effective 
orthopedic surgery for patients with advanced knee 
osteoarthritis (KOA) and presents a 10-year 
cumulative revision rate ranging from 3.5 % to 6 % [1], 
[2]. Nowadays, the global number of TKA is massively 
increasing due to the increased longevity of the 
population and the higher prevalence of knee arthritis 
[3], and it is projected to grow by 85 % by 2030. 
Consequently, an increase in revision TKA is also 
expected, as demonstrated by a study projecting a 
growth in revision TKA by 600 % between 2005 and 
2030 in USA [4]. Revision TKA procedures are more 
complex, costly, and associated with decreased 
implant longevity and suboptimal patient-reported 
outcomes when compared to primary TKA [5, 6]. The 
growing number of revisions presents challenges for 
the health care systems and the early detection of 
primary TKA failure has become of utmost importance 
in the orthopedic field. 

In this context, machine learning (ML) models 
have gained prominence in the field of TKA 
orthopedic surgery, with earlier efforts aimed at 
predicting various outcomes of TKA, including 
complications, length of hospital stay, costs, patient 
satisfaction, functional outcome and revision [7, 8]. As 
regards TKA revision prediction, recent studies 
developed ML prediction models for revision TKA 
based on clinical [9, 10] or on radiographical data  
[11, 12]. Focusing on the image-based predictive 
models, both studies aimed to predict implant 
loosening: the study by Shah et al. [11] considered  
pre-operative radiographs and achieved an accuracy of 
85.8 % on a test set of 138 patients, while the study by 
Lau et al. [12] considered post-operative radiographs 

and achieved an accuracy of 96.3 % on a test set of  
95 radiographs. However, so far, an image-based deep 
learning (DL) model for the prediction of TKA failure 
(not limited to loosening) has not been proposed. 

Our research group recently developed an  
image-based DL predictive model for the automatic 
identification of hip prosthesis failure from  
post-operative plain radiographs, achieving an 
accuracy of 0.97 on the test set [13, 14]. Considering 
the remarkable performance of our developed DL 
model, we seek to investigate whether a transfer 
learning approach from the hip prosthesis failure 
model can accurately detect primary TKA failure from 
post-operative plain radiographs. To the best of the 
authors’ knowledge a similar approach has never been 
investigated so far. 

 
 
2. Methods 
 
2.1. Patient Dataset 
 

225 Patients included in this study were 
retrospectively collected from the digital medical 
records at Humanitas Research Hospital and Ospedale 
Santa Corona di Pietra Ligure, Italy, between 2000 and 
2019. All the radiographic images were provided by 
the Clinical and Radiographic Arthroplasty Register of 
Livio Sciutto Foundation Biomedical Research in 
Orthopedics – ONLUS. The study was approved by the 
Institutional Ethical Committee of Humanitas 
Research Hospital (prot. 408/19, approved on June 25, 
2019), Italy, and all patients gave their written 
informed consent. 120 patients with TKA, who 
underwent total or partial revision due to implant 
failure in the considered period were included (failed 
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group). TKA failure encompassed loosening, 
dislocation, fracture, polyethylene wear and infection. 
A control group (non-failed group) was randomly 
collected from patients who underwent TKA in the 
same period (105 patients). To be eligible for the study, 
a minimum of one antero-posterior or lateral 
radiographic view of the implant needed to be 
available before revision surgery for the failed group 
and during follow-up time for the non-failed group. 
When patients of the non-failed group had undergone 
TKA for both knees, both implants were used for the 
analysis. Finally, 238 and 237 images were included 
for the failed and non-failed group, respectively. 
 
 
2.2. Image Preprocessing 
 

All images underwent the same preprocessing steps 
previously adopted for the development of the DL 
model of hip prosthesis failure [14]. Specifically, i) a 
gamma power transformation was applied to reduce 
the mist like effect and increase brightness [15]; ii) a 
sigmoidal function and the contrast-limited adaptive 
histogram equalization (CLAHE) method were applied 
to enhance contrast, thus highlighting the prosthesis 
compared to bone structures [16]; iii) a low  
pass-filtering operation was performed using a 2-D 
Gaussian smoothing kernel, eliminating frequencies 
above the cutoff frequency, which typically represent 
noise. Finally, the image was resized to a standard 
input dimension (224×224) and normalized using  
z-score standardization. Fig. 1 shows an example of 
initial and preprocessed image. 
 
 

 
 

Fig. 1. Image preprocessing. A) Initial image.  
B) preprocessed image. 

 
 
2.3. Model Development and Testing 
 

The DL model was developed by applying transfer 
learning with fine-tuning algorithms from the DL 
model predicting hip prosthesis failure from plain 
radiographs [14]. Specifically, the hip prosthesis DL 
model was developed from the Densenet169 [17] 
pretrained for ImageNet [18], by replacing the Fully 

Connected layers of the original structure with a 
Global Average Pooling, a 128-Dense, a Dropout and 
2-Dense layers and by applying a transfer learning 
fine-tuning approach [14]. To train the TKA failure 
model, layers of the pre-trained hip prosthesis model 
were frozen up to the first convolutional layer within 
the first dense block of the fourth stage. 

The data were split into training, validation and test 
sets using a stratified approach: 20 % of the samples 
were reserved for model testing, and the remaining 
data were further divided into an 80-20 split for 
training and validation, respectively. The number of 
samples in the training, validation and test sets are 
reported in Table 1 for both failed and non-failed 
groups. 

During training, the accuracy along epochs was 
evaluated to assess the network performance. The 
model performance on the test set was assessed by 
evaluating the sensitivity, specificity, accuracy, F1 
score and AUC. 
 
 

Table 1. Dataset. 
 

Set Tot Failed Non-failed 
Training 236 118 118 
Validation 100 50 50 
Test 139 70 69 

 
 
3. Results 
 

Fig. 2 shows the training and validation accuracy 
as function of epochs, reaching a plateau around epoch 
12. The model achieved a training and validation 
accuracy of 0.99 and 0.88, respectively. 
 
 

 
 

Fig. 2. Trend of training and validation accuracy. 
 
 
When applied to the test set, the model presented a 

balanced accuracy of 0.83, sensitivity of 0.89, 
specificity of 0.77, F1 score of 0.84 and AUC of 0.91 
(Figs. 3 and 4). Table 2 details the model performance 
in the validation and test sets. Sixty-two (over 70) 
images were correctly classified as failed, with a mean 
probability of 0.98±0.07 and 53 images (over 69) were 
correctly classified as non-failed with a mean 
probability of 0.96±0.10. Fig. 5 details the 
classification probabilities of the images of the failed 
and non-failed classes. 
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Fig. 3. Confusion matrix on the test set. 
 

 
 

Fig. 4. Receiver Operating Characteristic (ROC) curve  
on the test set. 

 
Table 2. Model performance. 

 
Set Validation Test 

Accuracy 0.88 0.83 
Sensitivity 0.84 0.89 
Specificity 0.92 0.77 
F1 score 0.87 0.84 
AUC 0.94 0.91  

 
 

 
 

Fig. 5. Classification probabilities of the failed images  
in red and the non-failed images in green. 

4. Conclusions 
 

Nowadays, the global number of primary and 
revision TKA is continuously increasing and this trend 
is expected to continue. Revision TKA has a less 
favorable outcome than primary TKA, therefore the 
early detection of primary TKA failure may be 
beneficial. However, the early detection of TKA 
failure from radiographs can be challenging for 
clinicians. Moreover, the ever-growing population of 
TKA patients will represent a burden for the healthcare 
system with increased follow-up requirements. In this 
context, ML and DL model for predicting TKA failure 
have the potential to support the clinician diagnostic 
activity and alleviate their workload, offering 
automated TKA failure detection. To the best of the 
authors’ knowledge, only two DL models were 
proposed to predict TKA failure from plain 
radiographs. Although their good results, these studies 
were focused on TKA loosening. 

Herein, we developed a novel image-based DL 
model to predict TKA failure from post-operative 
radiographs, where “failure” encompasses the 
requirement for revision, extending beyond mere 
loosening. Moreover, we successfully demonstrated 
the effectiveness of a transfer learning fine-tuning 
approach from a previously developed DL model for 
hip prosthesis failure. This approach allowed us to 
achieve satisfying results (in line with studies in the 
literature) with a relatively small dataset. 

In failure prediction for hip prosthesis, clinical 
variables have proved to be good predictors [19]. Thus, 
in future works, to improve the diagnostic 
performance, the image-based DL model will be 
integrated with patients’ clinical information. Finally, 
to confirm the generalizability of the model, the DL 
pipeline should be tested on a larger multi-centric 
cohort of patients. 
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Summary: A novel approach to automatic concrete crack identification in critical underwater infrastructure is presented in 
this paper. Optical effects in shallow underwater environment are accurately simulated a used to augment the standard dataset 
of cracked and intact concrete surfaces. 3D wave geometry based on the JONSWAP spectrum and ray tracing technology is 
used to render realistic underwater effects. It is demonstrated that a transfer learning approach can be efficiently used to 
perform reliable and accurate automatic identification of cracks in underwater infrastructure. The overall accuracy of crack 
identification in shallow underwater environment reaches 99.7 % what can be considered as a reliable approach to automatic 
routine inspection monitoring of critical infrastructure. 
 
Keywords: Underwater optical effects, Crack detection, Machine learning, Transfer learning, Augmentation. 
 
 
1. Introduction 
 

Concrete structures are vital components of critical 
underwater infrastructure requiring durability in harsh 
environments. Ensuring their integrity is crucial to 
prevent possible accidents or even larger scale 
disasters. Routine inspection of such structures is 
limited by challenges related to the visibility and 
accessibility, making traditional inspection methods 
risky and inefficient. Techniques employing visual 
inspections by divers are costly and time-consuming. 
Emerging technologies based on automatic underwater 
drones offer promises but require further developments 
in terms of reliability, consistency, and accuracy. With 
the increasing underwater infrastructure, the reliability 
of crack detection methods becomes an essential 
factor. This paper addresses the existing gap in the 
existing technology by proposing efficient crack 
detection methods specifically tailored for underwater 
concrete structures. Early detection enables timely 
repairs, ensuring long-term safety and functionality of 
critical underwater infrastructure. 

 
 

2. Dataset Overview and Image Augmentation  
    Techniques 
 

The dataset of 40000 images containing both 
cracked and intact surfaces from Ozgenel's concrete 
crack dataset [1] has been used. The neural network 
has been trained on a mix of "Positive" and "Negative" 
images, each sized at 227×227 pixels, and its accuracy 
assessed on a smaller test subset. To simulate 
underwater conditions, 60 realistic underwater caustic 
effects using Blender's Cycles were generated. 
Additionally, each of the 40000 images have been 
paired with a unique optical water effect mask, 
achieved through various modifications like rotation 

and zoom. These masks superimposed onto the 
concrete surface images using blending techniques to 
enhance crack visibility, a process applied across the 
entire dataset [2]. 

The interaction between light and underwater 
environments, influenced by seabed topography and 
streamer depth, impacts optical effects. Utilizing these 
variables in a wave propagation model enables the 
prediction of areas where such effects do occur. Wave 
models, crucial for surf forecasting, can be developed 
using phase averaging or resolving techniques, with 
modern iterations finding application in various 
engineering fields. This study employs a model to 
generate 3D wave geometry for image augmentation, 
based on the JONSWAP spectrum [3]. Rendering 
realistic underwater concrete structure images is 
essential, achieved through techniques detailed in [4]. 
A deep learning method is tested using a dataset of 
40000 photos, augmented with underwater optical 
effects. The augmentation process involves diverse 
modifications and blending techniques to enhance 
dataset variability [murky problem]. 

 
 

3. Considerations for Shallow Water Optical  
    Effects 
 

Shallow water environments present unique 
challenges for optical imaging due to factors such as 
light refraction, scattering, and absorption. These 
optical effects can distort images, making crack 
detection in underwater structures challenging. 
Strategies to mitigate optical distortion include 
optimizing lighting conditions, using specialized 
optics, and employing image processing algorithms to 
correct for distortion. However, even with these 
strategies, shallow water optical effects can still impact 
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crack detection accuracy by altering the appearance of 
cracks and surrounding areas. Understanding and 
accounting for these effects is crucial for developing 
robust crack detection systems in underwater 
environments. 

Examining 3D object representation in underwater 
settings entails understanding techniques for handling 
structural features, pivotal for integrating with deep 
learning models. Modeling non-flat surface images, 
however, already presents a number of important 
challenges, requiring innovative approaches to 
accurately represent complex structures [5]. 
Overcoming these obstacles is crucial for applications 
like concrete crack detection, where precise modeling 
of surface structures is essential. This comprehensive 
approach to analyzing and modeling underwater 

environments enables advancements in structural 
analysis and contributes to the broader field of 
underwater exploration and engineering. 

In our study, we utilized image raytracing 
techniques to simulate the optical surface effects. 
Optical underwater effects are meticulously crafted 
and seamlessly blended onto the regenerated crack 
images, further enhancing their depth and authenticity. 
Subsequently, the applied shallow water optical effects 
are augmented to the existing dataset of images, 
enriching their visual complexity and mimicking real-
world underwater environments. Through this 
comprehensive approach, we aimed to create a highly 
accurate and immersive representation of underwater 
structures, facilitating precise crack detection and 
analysis in challenging aquatic settings (Fig. 1). 

 
 

 
 

Fig. 1. The Ozgenel's concrete crack dataset augmented by the optical shallow underwater effects. 
 
 

4. Results and Discussion 
 

The transfer learning approach is adopted for 
machine learning tasks due to its versatility and  
time-saving benefits. Transfer learning allows the 
utilization of pre-trained deep learning networks, like 
SqueezeNet and AlexNet, eliminating the need to build 
networks from scratch. Leveraging pre-trained 
networks expedites the training process for new tasks, 
enhancing sensitivity in real-world applications within 
a shorter timeframe. [5, 6], guiding the precise 
methodology employed in this paper. The confusion 
matrix with underwater crack images dataset results 
into the overall accuracy of 99.7 % (Table 1). 

 
 

Table 1. Confusion matrix. 
 

True Class 
Negative 5981 19 
Positive 20 5980 

  Negative Positive 
  Predicted class 
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Summary: The article presents a multi-agent simulation utilizing fuzzy logic to explore battery recharging management for 
Autonomous Industrial Vehicles (AIVs). This approach offers adaptability and resilience through a distributed system, 
accommodating variations in AIV battery capacity. Results highlight the efficacy of adaptive fuzzy multi-agent models in 
optimizing recharging strategies, enhancing operational efficiency, and curbing energy consumption. Dynamic factors like 
workload variations and AIV-infrastructure communication are considered in the form of heuristics, emphasizing the 
significance of flexible, collaborative approaches in autonomous systems. Notably, infrastructure capable of optimizing 
recharging based on energy tariffs can significantly reduce consumption during peak hours, emphasizing the importance of 
such strategies in dynamic environments. Overall, the study underscores the potential of incorporating adaptive fuzzy  
multi-agent models for AIV energy management to drive efficiency and sustainability in industrial operations. 
 
Keywords: Cooperative mobile robots, Recharging battery management, Fuzzy logic, Multi-agent simulation, Airport 4.0. 
 
 
1. Introduction 

 
Industry 4.0 is coming with a high degree of 

digitalisation of industrial processes, but also a 
significant increase in communication and cooperation 
between the machines that make it up. This is the case 
with autonomous industrial vehicles (AIVs) and other 
cooperative mobile robots that are proliferating in 
factories or airports, and whose intelligence and 
autonomy are increasing. 

The deployment of AIV fleets raises several issues, 
all of which related to their actual level of autonomy: 
acceptance by employees, vehicle localization, traffic 
flow, collision detection, and vehicle perception of 
changing environments. Simulation allows us to take 
into account the different constraints and requirements 
formulated by manufacturers and future users of  
these AIVs. 

Before starting to test AIV traffic scenarios on a 
large scale in sometimes complex industrial or airport 
situations, it is essential to simulate these scenarios [1]. 
One significant benefit of running simulations is that 
usable results without the need to applying a  
scaling factor. 

The main benefits of simulating AIV operations are 
extensively presented by Tsolakis et al. [2]: simulation 
reduces the development time and cost of an AIV, 
minimises the potential operational risks associated 
with the AIV, enables the feasibility of different AIVs 
scenarios to be assessed at a strategic or operational 
level, provides a rapid understanding of AIV 
operations (under conditions of limited data 
availability), and identifies improvements in facility 
layout configurations hosting AIVs. 

The simulation also provides flexibility in terms of 
deployment and redeployment, and enables us to study 

the sharing of responsibility between the central server 
and the robots (local/global balance) for the various 
operational decisions. Another advantage of 
simulations is to introduce humans into the scenarios 
in order to convince people, before the actual 
deployment of autonomous mobile robots, of the safe 
nature of the coexistence and possible interactions 
between these future mobile robots and human 
operators in industry [3]. 

Agent-based approaches are often proposed for the 
simulation of autonomous vehicles [4], including path 
planning in a large-scale context [5], or optimal task 
allocation with collision and obstacle avoidance [6]. 

Our current research focuses on the use of fuzzy 
agents to manage the levels of imprecision and 
uncertainty involved in modelling the behaviour of 
simulated vehicles [7]. Fuzzy set theory is well suited 
to the processing of uncertain or imprecise information 
that must lead to decision-making by autonomous 
agents [8]. The concept of the fuzzy agent can 
therefore be proposed as a partial implementation of 
this theory. 

Most of the control tasks performed by 
autonomous mobile robots (perception, localisation, 
mapping, path and task planning, navigation and 
motion control, obstacle avoidance, communication, 
and energy control [9]) have been the subject of 
performance improvement studies using fuzzy logic: 
1) Navigation of mobile robots from conceptual, 

theoretical or application points of view [10], 
navigation of several mobile robots [11], 
navigation and control of a mobile robot in an 
unknown environment in real time [12], and 
comparison of navigation performance of mobile 
robots obtained using fuzzy logic or neural 
networks [13]; 
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2) Obstacle avoidance from conceptual and systemic 
points of view in an unknown dynamic 
environment [14]; 

3) Path planning strategies focusing on obstacle 
avoidance [15] or global navigation [16]; 

4) Motion planning [17]; 
5) Localisation of mobile robots [18]; 
6) Intelligent management of energy consumption 

[19]. 
An agent-based system is fuzzy if its agents have 

fuzzy behaviours or if the knowledge they use is fuzzy. 
This means that agents can have: 1) fuzzy knowledge 
(fuzzy decision rules, fuzzy linguistic variables, and 
fuzzy linguistic values); 2) fuzzy behaviours (the 
behaviours adopted by the agents as a result of fuzzy 
inferences); and 3) fuzzy interactions, organisations or 
roles [20]. 

Fuzzy agents can follow the evolution of fuzzy 
information coming from their environment and from 

the agents [21]. By interpreting the fuzzy information 
they receive or perceive, fuzzy agents interact within a 
multi-agent system; they can also interact in a fuzzy 
manner. For example, a fuzzy agent can discriminate a 
fuzzy interaction value to evaluate its degree of affinity 
(or interest) with another fuzzy agent [22]. 

 
 

2. Fuzzy Agent-based Simulation 
 

The different elements of the fuzzy agent model are 
as follows [7]: (1) the agent-based fuzzy system; (2) 
the behaviour of a fuzzy agent, inspired by  
perceive-decide-act feedback loops [23]; (3-5) the 
behavioural functions of a fuzzy agent; (6) and the 
fuzzy interactions between two fuzzy agents. 
 

 
Table 1. Fuzzy agent model used in our simulations [7, 24]. 

 
>=< ΟΡΙΑΜ α

~,~,~,~~
  (1) 

where Α  is a set of agents, { }n1 ,...,A αα= ; Α~  is a set of fuzzy agents, { }m1
~,...,~A

~
αα=  with A~

⊆Α ; Ι~  is a set of fuzzy 

interactions between fuzzy agents; Ρ~  is a set of fuzzy roles filled by fuzzy agents; and Ο~  is a set of fuzzy organisations 
defined for fuzzy agents (subsets of strongly related  fuzzy agents). 

iiii
~)~()~()~(i ,,,~
ααΓα∆αΠ ΚΦΦΦα =   (2) 

where, for a fuzzy agent i
~α , )~( iαΠΦ  is its observation function, )~( iα∆Φ  its decision-making function, )~( iαΓΦ  its action 

function and 
i

~αΚ  its knowledge base. 

iiiii
~~~~)~( )(: αααααΠ ΠΣΙΕΦ →×∪  (3) 

iiii
~~~)~( : αααα∆ ∆ΣΠΦ →×  (4) 

iii
~~)~( : αααΓ ΓΣ∆Φ →×  (5) 

where, for a fuzzy agent i
~α , 

i
~αΕ  is the set of fuzzy events observed, 

i
~αΙ  all its fuzzy interactions, 

i
~αΣ  all its fuzzy states, 

i
~αΠ  all its fuzzy perceptions, 

i
~α∆  all its fuzzy decisions, 

i
~αΓ  all its fuzzy actions, and Σ  is the state of the fuzzy multi-

agent system αΜ~
. 

>=< crs
~,~,~~ γααιι   (6) 

where, for fuzzy interaction ιι
~ , s

~α  is the fuzzy source agent, r
~α  is the destination fuzzy agent, and c

~γ  is a fuzzy 
communication act (inform, diffuse, ask, reply, …). 
 
 
3. Case Study: Autonomous Management  
    of Battery Recharging 
 

We present an adaptable fuzzy multi-agent model 
(Fig. 1) that addresses the challenges of energy 
management for AIVs. Efficient management of AIVs 
requires a holistic approach that takes into account 
several factors, including operational availability, 
energy consumption [25], collaboration between AIVs 
and the dynamic infrastructure, and their adaptation to 
changing conditions. We aim to optimise recharging 
based on energy costs, as a low workload combined 
with frequent recharging can increase the overall 
energy consumption of the system. In addition, poor 
anticipation can limit system availability. 

AIV missions do not follow a uniform distribution 
in terms of frequency, creating periods of intense 
activity and others that are quieter. It is therefore 
essential to link the energy consumption of AIVs to the 
amount of work carried out and their operational 
availability. 

To avoid an overload of recharging requests due to 
too many simultaneous requests, the AIVs need to 
work together by communicating with each other or 
via the infrastructure. As for automatic recharging, 
although it solves the problem of the number of 
charges, it requires space and consumes energy. Even 
a 2 to 3 % reduction in energy consumption is 
significant for certain warehouses and airports. For the 
introduction of fleets of autonomous vehicles in the 
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industry of the future, it therefore seems necessary to 
fine-tune the number of recharging points. This sizing 
can be improved by taking into account the 

possibilities for communication between the AIVs, 
which can collectively avoid critical (urgent) 
recharging. 

 
 

 
 

Fig. 1. Simulator architecture: dynamic elements in red, static in green, and not related to the environment in purple. 
 
 

3.1. Description of the Simulation Framework 
 

To test different autonomous management 
strategies for solving the problem of AIVs recharging 
batteries, we defined an initial scenario, which we will 
refer to as the basic scenario (Fig. 2). We made several 
improvements to this basic scenario and compared the 
number of missions carried out (1), the number of 
recharges performed (2), the average time taken to 
complete a mission in seconds (3), and waiting times 
for recharging in seconds (4). We also varied the 
charge threshold at which an AIV must recharge its 
battery. We then introduced a fuzzy inference system 
to determine the recharge time. We also varied the 
values of the fuzzy model (fuzzy linguistic values). 

 
 

3.2. Comparisons between Thresholds  
       and Fuzzy Logic Models 
 

In this section, we delve into a comparative 
analysis between different thresholds and fuzzy logic 
models. We propose 3 different scenarios: 

- Scenario 1 (or ‘Sc1’), which corresponds to a 
Basic Scenario; 
- Scenario 2 (or ‘Sc2’), where different threshold 
values are tested in the context of scenario 1; 
- Scenario 3 (or ‘Sc3’), where AIVs use a fuzzy 
logic model for recharge. 
We simulated these three scenarios for  

1000 baggages (a discussion regarding the scenario 
results is provided in the following three sections). The 
temporal results are shown in Table 3. We aim to 
discern the optimal threshold configurations that 
maximise mission throughput, minimise recharging 
frequency, and optimise resource utilisation, thereby 
improving the overall efficiency of autonomous 
management strategies for recharging the AIV battery. 

 
 

Fig. 2. Simulation Application. 
 
 

Table 2. Time results for 1000 baggages for Sc1,  
Sc2 and Sc3. 

 
Scenarios Sc1 Sc2 Sc3 
Number of 
baggages 1000 1000 1000 

Total recharge 
time (s) 3675 3535 3561 

Total 
simulation 

time 
(hour:minutes:

seconds) 

04:36:46 04:35:11 04:34:58 
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3.2.a. Basic Scenario 
 

In the “Basic Scenario”, AIVs have a single 
threshold model set at 30 % for recharge. This scenario 
makes it possible to compare performance in terms of 
mission processing time (overall and individual time), 
number of recharges, and waiting time for recharges 
(access to a free station). The AIVs results for Scenario 
1 are shown in Table 3. 
 
 

Table 3. AIVs results for Scenario 1. 
 

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global 
Thresholds 30 30 30 30 30  

(1) 201 200 199 200 200 1000 
(2) 67 67 66 67 67 334 
(3) 80 80 80 80 80 80 
(4) 0 0 0 11 23 34 

 
 
3.2.b. Different threshold values 
 

Scenario 2 enables us to compare different 
threshold values for AIVs recharge. When we compare 
with thresholds varying between 15 % and 30 %, the 
overall mission processing time is slightly lower, and 
the number of recharges and overall recharge time are 
also lower (297 and 3535, respectively). The 
performance of AIV1 with the lowest threshold (15 %) 
is obviously the best, although there is a greater risk of 
not being able to reach a station due to a lack of charge 
in the event of an incident! 
 
 

Table 4. AIV results for Scenario 2. 
 

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global 
Thresholds 15 20 25 30 35  

(1) 202 200 200 199 199 1000 
(2) 50 57 57 66 67 295 
(3) 79 80 80 77 80 79.2 
(4) 31 38 27 2 13 111 

 
 
3.2.c. Fuzzy Logic Model 
 

In comparison with Scenario 1, where AIVs have a 
threshold of 30 %, in Scenario 3, AIVs use a fuzzy 
basic model. The results presented in Table 5 
demonstrate an improvement in overall and individual 
AIV times (79.4 seconds on average instead of  
80 seconds) and fewer recharges (285 recharges 
instead of 334). 
 
 

Table 5. AIV results for Scenario 3. 
 

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global 
FL model FL FL FL FL FL  

(1) 200 200 200 200 200 1000 
(2) 57 57 57 57 57 285 
(3) 80 80 80 80 77 79.4 
(4) 0 19 0 15 0 34 

3.3. Increases in Fuzzy Logic Criteria 
 

To improve the results of the previous simulations, 
we made 3 types of adaptation (heuristics), taking into 
account more realistic constraints and the possibility of 
AIVs communicating with each other and with 
infrastructure elements such as charging points: 

1) Adaptation of recharging according to the 
needs of the AIVs and the availability of the 
charging points (centralised scenario by 
supervision and decentralised scenario by 
communication between the AIVs and the 
charging points); 

2) Adaptation of recharging according to the rate 
of baggage arrival and the resulting variation in 
activity (the number of missions to be 
performed by the AIVs in a unit of time is no 
longer constant); 

3) Adapting the speed of the AIVs according to 
the rate of baggage arrival (centralised scenario 
by supervision and decentralised scenario by 
communication between the AIVs and the 
charging points). 

The objective of this section is to show that specific 
heuristics allow certain situations to be dealt with 
fairly finely and increase the collective/overall 
performance of AIVs. We simulated these three 
improved scenarios for 1000 baggages. The temporal 
results are shown in Table 6. 
 
Table 6. Time results and configuration for 1000 baggages 

for Sc4, Sc5 and Sc6. 
 

Scenarios Sc4 Sc5 Sc6 
Number of baggages 1000 1000 1000 

Total recharge time (s) 3528 3574 11807 
Total simulation time 

(hour:minutes:seconds) 03:59:06 03:51:08 02:25:00 

Maximum number 
waiting baggages 486 650 499 

Average Baggages 
Waiting 242 322 266 

 
 
3.3.a. Adapting Recharging to Demand  
          and the Availability of Charging Points 
 

Scenario 4 simulates the adaptation of charging to 
demand and the availability of charging points. The 
AIV results are shown below, in Table 7. The 
effectiveness of this heuristic is clearly visible, 
especially for AIV1: 14 fewer recharges than for 
AIV5, and 15 fewer than for AIV4. The total 
recharging time is also shorter than for scenarios 1 and 
2: 3528 seconds instead of 3675 seconds and  
3535 seconds. 
 
 
3.3.b. Adaptation of Recharging According  
          to the Baggage Arrival Rate 
 

Scenario 5 simulates an adaptation of recharging as 
a function of the baggage arrival rate and therefore of 
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the variation in induced activity (the number of tasks 
to be carried out by the AIVs). Table 8 shows that the 
adaptation of recharging enables AIVs to complete 
their missions more quickly than in scenario 4. In fact, 
they complete 1 mission in 66 seconds on average, 
compared with 69 seconds for Scenario 4. 
 
 

Table 7. AIV results for Scenario 4. 
 

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global 
Thresholds 15/15 20/15 25/20 30/20 35/25  

(1) 202 201 200 200 197 1000 
(2) 50 56 57 66 65 294 
(3) 69 69 69 69 69 69 
(4) 117 11 44 14 0 186 

 
 

Table 8. AIV results for Scenario 5. 
 

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global 
Thresholds 20 20 20 20 20  

(1) 201 200 201 200 200 1000 
(2) 57 57 58 57 57 286 
(3) 66 66 66 66 66 66 
(4) 0 46 0 0 24 70 

 
 
3.3.c. Adapting the Speed of the AIVs to the Flow  
          of Baggage Arrivals 
 

In scenario 6, we propose to adapt the speed of the 
AIVs to the flow of baggage arrivals. Compared with 
scenario 5, the 30 % threshold has been adapted (the 
20 % threshold causing too many load faults due to the 
increase in energy consumption in cases of faster 
speed). The overall simulation time is much shorter 
despite a much longer overall reload time, as presented 
in Table 6. Moreover, Table 9 shows that the 
throughput is a little better controlled since the 
baggage waiting time is 266 seconds in this scenario 
instead of 332 seconds for scenario 5, presented  
in Table 8. 

 
 

Table 9. AIV results for Scenario 6. 
 

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global 
Thresholds 20 20 20 20 20 20 

(1) 199 203 198 203 197 1000 
(2) 195 200 194 200 194 983 
(3) 41 40 41 40 41 40.6 
(4) 330 39 342 20 343 1074 

 
 
4. Conclusions 
 

We have developed a multi-agent simulation, 
including fuzzy logic, to test various scenarios of 
battery recharging management. This approach offers 
a flexible adaptation to the various aspects of AIV 
management and facilitates any adjustments required 
for deployment on the industrial site. The use of a 
distributed system provides temporary autonomy in the 
event of failure of the central infrastructure, taking into 

account the individual differences in the battery 
capacity of the AIVs. 

The simulation results demonstrate that 
incorporating adaptive fuzzy multi-agent models for 
AIV energy management can significantly optimize 
recharging strategies, improve operational efficiency, 
and mitigate energy consumption, particularly by 
considering dynamic factors such as workload 
variation, communication between AIVs and 
infrastructure elements. In fact, an infrastructure 
capable of optimising recharging according to energy 
tariffs is advantageous, particularly with the ability to 
cut consumption over an hour. These findings will 
underscore the importance of flexible, collaborative 
approaches in enhancing the performance of 
autonomous systems in dynamic environments. 

We plan to continue integrating fuzzy models into 
our AIV simulation agents in order to increase the 
relevance and effectiveness of their decisions in the 
management of their energy recharge. 
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Summary: WordNet, an expansive English lexical database, intricately structures nouns, verbs, adjectives, and adverbs into 
synsets interconnected by semantic and part-of-speech relationships. As a fundamental resource in natural language processing 
(NLP), the dataset necessitates transformation into computationally manageable vectors, commonly referred to as word 
embeddings. While Graph Convolutional Networks (GCN) demonstrate proficiency in graph embedding, Graph Autoencoders 
(GAE) assumes a central role in unsupervised graph learning. This study explores the integration of NLP and GNN 
methodologies to efficiently embed graphs and reconstruct semantic relationships within the WordNet lexical database. 
Specifically, to address the dataset's inherent complexity, we focus on the WN18RR subset and graph partitioning strategy to 
efficiently embed subgraphs by employing a multi-graph training approach. Furthermore, we introduce a delicately designed 
dual-decoding mechanism to enhance the model's capability in reconstructing node features. This work offers a novel solution 
for leveraging the WordNet dataset in GAE, paving the way for more effective graph embeddings in future research. 
 
Keywords: WordNet, Graph autoencoder, Graph convolutional networks, Subgraph embedding, Semantic relationship 
reconstruction. 
 
 
1. Introduction 
 

WorldNet, a comprehensive English lexical 
database [1], organizes nouns, verbs, adjectives, and 
adverbs into sets of synonyms. Interconnections 
between these synonym sets are established through 
semantic and part-of-speech relationships. Frequently 
utilized in natural language processing, WorldNet 
requires a conversion of lexical entries into vector 
forms, known as word embeddings, to enhance 
computer comprehension of textual information. 
Classic word embedding models, such as the bag-of-
words model and distributed representations are 
commonly employed. It is noteworthy that a 
significant similarity exists between natural language 
datasets and graph data. Words can be considered as 
nodes, with relationships forming edges. Similar to 
natural language data, graph data cannot be directly 
input into computer models and requires reliance on 
graph embedding techniques. These embedding 
algorithms draw inspiration from the field of natural 
language processing, exemplified by techniques like 
DeepWalk and node2vec, both rooted in the core ideas 
of word2vec. 

Compared to textual data, graph-structured data is 
more complex, exhibiting diverse and unstable 
structural variations with tight relationships among 
various data nodes. A change in a single node may 
potentially affect the entire graph structure. Graph 
representation methods based on random walk 
strategies primarily focus on the structural features of 
graph networks, which often neglecting the attribute 
features of nodes and textual information. These 
elements play a pivotal role in graph networks, 
especially in heterogeneous graphs. In recent years, 

GCN has excelled in graph embedding algorithms. It 
adeptly integrates the attribute information of nodes 
and their adjacent neighbors. Knowledge graphs are 
closely related to graph data and have been widely 
applied with outstanding results in natural language 
processing. Researchers often focus on issues such as 
word embedding representation, link prediction, and 
knowledge graph completion. We aim to strengthen 
the relation between natural language processing and 
graph learning, and explore the potential and 
possibilities of graph deep learning and natural 
language processing from another perspective. 

Our study uniquely applies the WordNet dataset to 
GAE, achieving graph data reconstruction. GAE [2] 
incorporates an encoder-decoder mechanism for graph 
data reconstruction. The encoder effectively 
compresses complex data into low-dimensional vector 
representations, which serves as the latent information 
output of the model. By distilling crucial information 
while filtering out irrelevant details, it efficiently 
preserves the informational essence of the data. 
Subsequently, the extracted shallow variables are 
inputted into the decoder, which leverages the classical 
dot-product decoding technique to derive the 
reconstructed output of the graph. However, there are 
two major issues associated with reconstructing the 
WordNet dataset through GAE. First, the original 
WordNet dataset is extensive and intricate, cannot 
directly represent relationships between word nodes, 
rendering it impractical for direct input into GAE 
model. To address this challenge, we select WN18RR 
the subset of Wordnet as the original dataset. It 
contains 40943 entities and 11 relationships, 
represented in triple form (head entity, relationship, 
tail entity), facilitating efficient graph construction. 
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Given the distinctive nature of WordNet, which 
structures word relationships through synonym sets, it 
is inherent that the comprehensive dataset comprises 
interconnected or discrete subgraphs. Despite its 
reduced size, WN18RR remains complex, with 
multiple subgraphs. Consequently, we fragment the 
dataset into subgraph tasks and employ multi-graph 
training for GAE, which achieves embeddings for 
subgraphs, and ultimately representing the entire 
dataset. This strategy enhances the model training 
efficiency and aids in capturing both local and global 
information within the graph structure. Second, we 
observe that the original GAE model focuses solely on 
graph structure reconstruction, neglecting node feature 
reconstruction. The feature vectors of nodes serve as a 
pivotal element in graphs, encapsulating rich 
information pertaining to both the individual node and 
its intricate relationships with other nodes. By 
reinstating the original dimensionality of these feature 
vectors, we enable a more thorough reconstruction of 
the graph's structural and semantic nuances. We 
introduce a dual decoding mechanism, utilizing GCN 
decoding to achieve node feature reconstruction. 

In conclusion, GAE has demonstrated exceptional 
performance in graph data reconstruction, with a 
concise model design and strong plasticity. However, 
there are currently few studies that integrate WordNet 
data into GAE to achieve knowledge graph 
reconstruction. This paper proposes a reliable method 
that successfully combines WordNet data with GAE, 
yielding satisfactory experimental results. This 
research not only broadens the application scope of 
GAE but also provides new ideas and methods for 
knowledge graph reconstruction. We propose a  
multi-graph training strategy by selecting appropriate 
subsets, splitting subgraph tasks, and employing  
multi-graph training, our study provides a robust 
solution for the application of the original WordNet 
dataset in the GAE model. The introduction of a dual 
decoding strategy further lays the groundwork for 
efficient graph embedding representation. 
 
 
2. Related Works 
 

WordNet holds extensive application value in the 
field of natural language processing, particularly 
playing a crucial role in knowledge graph 
representation learning, link prediction, and 
knowledge graph completion. Among early traditional 
methods, algorithms based on translational distances 
such as TransE [3] and TransR [4], as well as tensor 
decomposition models like DisMult [5] and ComplEx 
[6], treat the knowledge graph as a three-dimensional 
adjacency matrix, effectively capturing the complex 
interactions between entities and relations. With the 
advancement of deep learning techniques, the 
integration of neural networks with knowledge graphs 
has also made significant progress. For instance, 
models like ConvE [7] and ConKB [8] have further 
improved the performance of knowledge graph 
representation learning by introducing deep learning 

methods such as convolutional neural networks. In 
these studies, WordNet, as an abundant and structured 
vocabulary resource, provides indispensable dataset 
support for the construction and representation 
learning of knowledge graphs. 

In the task of graph reconstruction, obtaining the 
embedded representation of graph data is a crucial 
step. This paper employs GCN to reconstruct the 
WordNet dataset, and the effectiveness of WordNet in 
GCN has received widespread attention. Schlichtkrull 
[9] et al. pioneered the utilization of the GCN 
framework to construct relational networks for 
knowledge graphs, namely the R-GCN model. In the 
encoding process, R-GCN constructs a corresponding 
relational transformation matrix for each relation to 
perform transformation operations on neighbor entity 
nodes connected by the relation, enabling better 
modeling of relational information in the knowledge 
graph. The WordGCN method constructs a word graph 
and utilizes graph convolutional networks to perform 
convolutional operations on the word graph. By 
aggregating information from neighboring nodes, 
WordGCN can update the representation of each node, 
effectively capturing contextual relationships among 
words. Additionally, the SemGCN [11] proposed by 
Shikhar Vashishthet al. not only considers the co-
occurrence relationships between words but also 
introduces rich semantic relationships such as 
hyponymy and synonymy to further enrich the 
representation of word embeddings. This approach can 
capture semantic connections among words more 
comprehensively, improving the quality of word 
embeddings. 

In the realm of graph data reconstruction, GAE has 
demonstrated extensive application potential. For 
instance, Shirui Pan [12] and their team proposed a 
unique adversarial graph embedding framework for 
graph data. This framework ingeniously encodes the 
topological structure and node content of the graph into 
a compact representation, enabling the training of a 
decoder to accurately reconstruct the graph structure. 
Furthermore, Zhenyu Hou [13] et al. introduced the 
GraphMAE model, which applies a masking process to 
a portion of the nodes in the graph during training. 
Subsequently, the masked graph is fed into an encoder 
to obtain the embedded representation of the nodes. 
Additionally, Hongyuan Zhang [14] et al. proposed a 
theoretical analysis method based on graph 
autoencoders and relaxed k-means, known as the 
EGAE model. This model effectively learns the 
embedded representation of graphs by designing 
specific encoder and decoder structures, providing 
novel insights for the analysis and processing of graph 
data. Moreover, there is the VGAE [2] model, which is 
based on variational encoders. This model integrates 
variational Bayesian methods with autoencoders, 
further enriching the technical methods for graph data 
reconstruction. GAE is essentially the application of 
AE to graph data, a technique that has also gained 
significant traction in the natural language processing. 
For instance, Chao Wei et al. introduced a  
manifold-regularized approach, specifically Short Text 

https://arxiv.dosf.top/search/cs?searchtype=author&query=Vashishth,+S
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Embedding Autoencoders (STE-AEs) [15]. This 
method aims to incorporate semantic information from 
neighboring texts into the regularization training of 
Autoencoders (AEs), enabling the extraction of 
discriminative low-dimensional embeddings for short 
texts. By integrating semantic manifolds within the AE 
framework, this approach enhances the 
representational power of the model, effectively 
capturing subtle yet crucial textual nuances. 

Furthermore, there exist numerous other models in 
the field of graph reconstruction, such as GraphRNN. 
This model ingeniously transforms the problem of 
graph generation into a sequence generation problem, 
enabling effective modeling of graph structures. 
Additionally, Deepak Nathani [16] and their team 
proposed an attention-based feature embedding 
method that can accurately capture the entity and 
relationship features within any given entity 
neighborhood, providing robust support for the deep 
analysis and processing of graph data. 
 
 
3. Methods 
 

This approach extends the GAE model by 
introducing a node feature reconstruction network and 
incorporating the WN18RR dataset. The objective is to 
achieve the reconstruction of both word-graph 
relationships and word-node features, involving two 
primary aspects: 

 
Data Preprocessing 

In prior research, datasets like Cora were utilized 
for training GAE models [5], stored in the form of 
adjacency matrices accompanied by corresponding 
feature vectors. However, the WN18RR dataset is  
text-based, organized in triplets (head entity, 
relationship, tail entity), lacking complete feature 
vector files compatible with GAE. Hence, 
preprocessing of the WN18RR dataset is essential to 
construct the adjacency matrix and feature vectors. 
Given the immense size of the WN18RR dataset and 
the relationships among synonym sets are fragmented 
and complex, it is impractical to adopt the 
straightforward methods employed in the handling of 
datasets like Cora. Typically, researchers unified the 
training, validation, and test sets into a single graph, 
randomly partitioned the valid edges, and 
reconstructed the complete graph. However, 
processing the WN18RR dataset presents two 
challenges: (1) Data Structure Issue: As a collection of 
synonyms, WN18RR exhibits graph relationships 
predominantly in the form of independent subgraphs, 
owing to its complex and extensive nature. A 
comprehensive graph training approach is unsuitable. 
(2) Feature Vector Construction Issue: The original 
WN18RR dataset lacks feature vectors, necessitating 
their manual construction. 

To address these challenges, we propose a  
multi-graph training strategy, splitting the dataset into 
independent subgraphs facilitating the reconstruction 
of individual subgraphs and, consequently, the entire 

dataset relationship (as illustrated in Fig. 1). We 
meticulously organize the subgraph list data in a triplet 
format, systematically extracting triplet relationship 
head nodes from the comprehensive dataset. Utilizing 
each selected node as the focal point, we 
comprehensively identify all its first-order 
relationships, thereby constructing distinct subgraphs. 
Subsequently, entities and edges in each subgraph are 
converted into index form respectively to build the 
adjacency matrix. For feature vector construction, 
considering the graph convolution model's ability to 
learn graph features, we adopt a random initialization 
approach, constructing feature vectors following a 0-1 
normal distribution. Notably, the dimensionality of 
feature vectors can be adjusted according to 
requirements, significantly impacting the model's 
training effectiveness. Properly balancing the 
dimensionality enhances the model's expressive power 
and generalization capabilities. 
This thorough data preprocessing lays the foundation 
for effective model training on the WN18RR dataset, 
addressing its unique challenges and paving the way 
for advanced graph-based semantic analysis. 
 
 

 
 

Fig. 1. Graph data preprocessing process. Splits  
a complete single graph into individual subgraphs. 

 
 
Reconstruction Modeling 

Based on the GAE model, we introduce a node 
feature vector reconstruction network as shown in  
Fig. 2. GAE is primarily encompassing encoding and 
decoding stages for graph reconstruction tasks. During 
the encoding phase, we leverage a two-layer GCN with 
sequential convolutional operations to meticulously 
capture the intricate relationships among nodes within 
the graph. Subsequently, these relationships are 
transformed into low-dimensional representations of 
the nodes, yielding the latent variables Z as output. 
This representation framework efficiently encodes the 
inherent structural and semantic information of the 
graph, serving as a crucial input for the subsequent 
decoding phase. The mathematical representation of 
the model is shown in Equation (1), where 𝐴𝐴 represents 
the normalized adjacency matrix as shown in equation 
2, D is the diagonal matrix with values corresponding 
to the sum of each row of the adjacency matrix, where 
𝐴̃𝐴  =  𝐴𝐴 + 𝐼𝐼. 
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Graph reconstruction decoding obtains the output 

of the graph reconstruction result by doing the dot 
product of the inverse of the hidden variable with itself 
as shown in equation (3). In the context of graph 
embeddings, for any two connected nodes, we strive to 
achieve a sufficiently large dot product between their 
respective embedded vectors, thereby enabling this dot 
product to effectively represent a "1" in the 
corresponding adjacency matrix entry. Conversely, for 
any two disconnected nodes, we aim for a dot product 
that is sufficiently small, allowing it to accurately 
represent a "0" in the adjacency matrix entry. This 
approach ensures that the graph embeddings 
effectively capture the connectivity patterns within  
the graph. 
 

 TA Z Z′ = ⋅  (3) 
 
 
3. Result 
 

The results of multi-graph training, as shown in 
Fig. 3, we construct node feature vectors with 
dimensions of 50 and 100, respectively, and the 
training outcomes vary under diverse parameter 
settings. We observed that the performance metric of 
loss value and accuracy improve with an increase in 
feature dimension. Simultaneously, on the basis of 
selecting a feature dimension of 100, we added a 
SoftMax layer to the encoder. Although this 
modification did not surpass the original model in 
terms of loss value performance, it exhibited optimal 
performance in terms of training accuracy and testing 

performance. To further investigate the impact of the 
SoftMax layer, we compared the performance of the 
test set when adding a SoftMax layer and when not 
adding a SoftMax layer under the condition of a feature 
dimension of 100. The results showed that the model 
with the SoftMax layer exhibited more stable 
performance, achieving a maximum accuracy of  
80.7 % on the test set. Fig. 4 demonstrates an example 
of the reconstructed subgraph, where the number of 
completely generated subgraphs in the test set 
exceeded 63.3 %. This result firmly establishes that the 
multi-subgraph training mode using the WordNet 
dataset employed in this paper exhibits excellent graph 
reconstruction effects on the simplified GAE model. 

Feature vector reconstruction decoding restores the 
dimension of the original feature vector by the inverse 
operation of the encoded part of the GCN as shown in 
equation (4). 
 

 0 1
Re Lu c b b aX (A, Z) A (AZW )Wf f × ×′ = =  (4) 

 
 

 
 

Fig. 2. Dual decoding GAE model. The model takes  
the adjacency matrix and feature vectors of the graph data  
as inputs and, after a GCN encoder, outputs the potential 
representation of the nodes Z. The dual decoder is divided 
into graph structure decoding (dot product decoder)  
and feature vector decoding (GCN decoder). Finally,  
model outputs the reconstructed adjacency matrix  
and feature vectors. 

 
 

 
 
Fig. 3. The multi-plot training results. a. The changes of loss value during the training process. b. The accuracy during  
the training process. c. When the feature dimension of the data is set to 100, the subsequent evaluation of the test set reveals 
specific values for test accuracy, average precision (AP), and area under the curve (AUC). d. When the dataset's feature 
dimension is set to 100, and a SoftMax layer is incorporated into the model, the subsequent evaluation of the test set reveals 
specific values for test accuracy, AP, and AUC. 
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Fig. 4. Subgraph reconstruction case. The reconstructed subgraphs presented by this model are exhibited,  
with each subgraph prototype adopting a star-shaped form. 

 
 
4. Conclusion 
 

This study introduces, for the first time, the 
application of the WN18RR dataset in graph 
autoencoders for graph reconstruction. We propose a 
method to split the dataset into subgraphs for  
multi-graph training reconstruction, concurrently 
addressing node feature reconstruction and graph 
reconstruction. This approach generally yields 
satisfactory reconstruction structures. The multi-graph 
training mode proves to be effective in enhancing 
model training efficiency, demonstrating superior 
reconstruction results compared to whole-graph 
training. Extensive evidence suggests that the  
multi-graph training mode significantly enhances the 
efficiency of model training. In contrast to full-graph 
training, this approach not only adeptly captures the 
intricate structural and feature information embedded 
within large-scale knowledge graphs, but also boosts 
training efficiency and yields superior reconstruction 
outcomes. In future work, we plan to incorporate GCN 
in the data processing phase. By leveraging GCN to 
learn the effective representations of feature vectors. 
This enhancement contributes to a better 
understanding of the intricate structure and 
relationships within the original graph. 
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Summary: In this study, a method for generating synthetic signals of electroencephalographic (EEG) brain activity is 
presented. The generated signals are suitable for analysis and the development of methods for estimating direct functional 
connectivity such as Granger causality (GC) from the perspective of unveiling their dynamic capabilities. To make the 
synthetic signals as realistic as possible, they are generated from real EEG signals and based on a regression model obtained 
from them. A signal pair with a known causality relationship is generated from two input signals with high directional 
functional connectivity estimated by GC. Their autoregressive model is used to mix their unrelated parts according to the 
desired dynamic functional connectivity with values of GC in a range from 0 to the GC of source signals. As the source of 
generated signals are real signals and their model of mutual dependences, the generated signals have all realistic properties, 
including the realistic signal dependencies such as delays, and frequency relationships. 
 
Keywords: Electroencephalography, Granger causality, Synthetic signals, Dynamic connectivity. 
 
 
1. Introduction 

 
The human brain comprises neurons connected by 

synapses. These neurons are structured across various 
spatial regions and engaged in functional interactions 
across diverse time frames [1]. In practice, there are 
several methods of measuring brain activity, and in this 
work, we used signals recorded by the 
electroencephalography (EEG) method, which 
provides us with good temporal resolution [2]. Brain 
connectivity analysis encompasses two main 
categories: structural and functional. Structural 
connectivity [3] analysis involves tracking the 
direction of fibers among brain regions (suitable 
measurement methods are magnetic resonance 
imaging MRI or diffusion tensor imaging DTI). 
Functional connectivity analysis examines the 
information exchange between brain regions or within 
a single region and can be categorized into undirected 
[4-8] (gauging the level of connectivity) and directed 
(assessing strength and direction) measures. Our focus 
in this study lies on directed connectivity measures. 
Several methods such as Granger Causality analysis 
(GC) [9-13], Phase Slope Index (PSI) [14, 15], 
Transfer Entropy (TE) [16], Partial Directed 
Coherence (PDC) [17], and others are used for directed 
connectivity analysis of EEG data. The most 
commonly used method is GC, and it is used for static 
and dynamic directed functional connectivity analysis. 
For the dynamic analysis, GC computes the 
connectivity based on autoregressive models using a 
temporal window. The size of this window limits the 
capabilities of describing connectivity dynamics. 

Assessment of the dynamic capabilities is especially 
difficult because of the lack of the ground truth for real 
signals. To enable evaluation of connectivity methods 
for assessing dynamic connectivity, the capability of 
measuring changes of connectivity in time, we propose 
a method for generating synthetic signals. 

Upon reviewing the existing literature where 
researchers employ GC, we did not find a way to 
compute synthetic signals with realistic properties and 
predefined the connectivity changes in time, which 
would enable us to test existing and develop improved 
methods for dynamic analysis of functional 
connectivity. Building upon the aforementioned, this 
paper presents the method of generating  
synthetic signals. 
 
 
2. Methods 
 

In this section, we review the GC method, and 
demonstrate the proposed procedure for generating 
realistic synthetic signals suitable for testing the 
dynamics of connectivity estimation methods. 
 
 
2.1. Granger Causality 
 

Granger causality (GC) is a statistical technique 
used to assess the causal relationship between two time 
series. It operates on the principle that if a variable, 
denoted as S (source or Granger-causes), influences 
another variable T (target), then past values of S should 
contain information that assists in predicting future 



6th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2024),  
17-19 April 2024, Funchal (Madeira Island), Portugal 

104 
 

values of T, beyond what is already predicted by past 
values of T alone. Briefly, Granger causality prediction 
determines whether past values of one variable 
enhance the prediction of another variable. 

When calculating the prediction of the next sample 
in an observed variable using only the past values from 
that variable, a univariate autoregressive model is 
used. Univariate autoregressive model is defined as: 
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which can be shortened as: 
 

 
1

( ) ( ) ( ),M
Ti Ti

T n T n i e nω
=

= − +∑  (2) 
 

where 𝜔𝜔𝑇𝑇𝑇𝑇 are the coefficients of the autoregressive 
model for T(n), M is the order of regression, and eT is 
autoregression error. 

Bivariate autoregressive models extend this 
concept to analyze the causal relationship between two 
variables and are defined as: 
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where eTS is multivariate regression error. Model 
coefficients 𝜔𝜔 are calculated by minimizing errors for 
provided signals of N samples, where N > M. GC is 
then defined as: 
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In directed functional connectivity analysis, 

Granger causality prediction serves as a powerful tool 
for inferring directional influences between different 
brain regions based on their time-series data. By 
applying the principles of Granger causality, it can be 
assessed whether the past activity of one (source) brain 
region contains predictive information about the future 
activity of the other (target) region, beyond what can 
be predicted by the past activity of that brain region 
alone. Through the application of Granger causality 
prediction, insights into static the dynamic interactions 
and causal relationships within complex systems can 
be gained, aiding in the understanding of predictive 
relationships and decision-making processes. 

2.2. Generation of Synthetic Signals 
 

Knowing the regression models, we can use them 
for mixing real signals into synthetic ones. Here, we 
can control the contribution of source signals by 
introducing an additional mixing parameter, which can 
arbitrarily change in time and, thus define the of 
connectivity dynamics. 

First, we have to define a method for generating 
signals with the maximal connectivity equal to the 
connectivity of source signals, from independent 
source signals. Let us take two real source signals T 
and S and build their regression models to estimate 
their univariate and bivariate regression errors 𝑒𝑒𝑇𝑇 and 
𝑒𝑒𝑇𝑇𝑇𝑇, as well as their connectivity GCTS. We can then 
take some subsections of signals T and S, with the same 
number of samples N' but at different time. Let us 
name them T' and S'. They are expected to be unrelated 
and have low GC. Using these sequences, we can 
generate a new sequence R1, which would resemble the 
signal T' but also be related to S', using the  
regression model: 
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The inclusion of the regression error 𝑒𝑒′𝑇𝑇𝑇𝑇 from the 

same subsection as signal T’ makes the generated 
sequence realistic from the perspective of 
predictability. The obtained signal R1 is expected to 
have GC = GCR1S in relation to S similar to GSTS. 

The limitation of this generative model is in 
inability to dynamically control the true connectivity. 
For getting a signal unrelated to S, one could use a 
univariate regression model, however, the obtained 
result equals the target signal T’: 
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Having the realistic signals that resemble high and 

low connectivity, i.e., R1 and R2, we can dynamically 
control the connectivity by mixing them: 
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Here, K(n) is a temporal connectivity parameter, 

defining the connectivity between R’ and S such that 
for K = 0 should ideally lead to GC = 0, while K = 1 
to GC ≈ GCTS. 

As such, the pair of signals {R’, S’} should enable 
us to test methods of dynamic connectivity in  
further research. 
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3. Results 
 

We demonstrate the proposed signal generation 
method on an EEG Motor Movement/Imagery Dataset 
[18]. We used the S001R01 recording of baseline with 
eyes open. The data was recorded at a sample rate of 
160 Hz with a duration of 61 seconds. The GC 
connectivity matrix was calculated (Fig. 1). High GC 
connectivity of 0.92 was observed between electrodes 
FC1 (T) and F1 (S). Model coefficients 𝜔𝜔(.) (of 
bivariate regressive model of order 19) which are 
needed for signal reconstruction, were calculated. 
Subsections of signals T and S, that is, time intervals 
recorded by electrode FC1 from 0 to 14.4 seconds (T’) 
and by electrode F1 from 28.8 to 43.2 seconds (S’) 
were selected. The GC of these unrelated parts of 
signals is 0.008. 

The temporal connectivity parameter K is defined 
as 1 in the first interval (0 to 4.8 seconds) and in the 
third interval (9.61 to 14.4 seconds), while set to 0 in 
the second interval (4.81 to 9.6 seconds). The synthetic 
signal was generated using the proposed method (8) 
and order 19. The resulting synthetic signal R’ and the 
source signal (S’) were used to perform Functional 
Connectivity analysis using GC (Fig. 2). For the three 
defined intervals, the obtained GC values were 0.77, 
0.032 and 0.77 respectively. The GC value for the 
second interval is low as expected, while values for the 
1st and 3rd interval are high. However, the GC for 
these intervals is still lower than the reference value 
that equals the GC of the original signals. 

To illustrate the usability of the signal generation 
method for analysis of dynamic connectivity 
estimation methods, we applied the dynamic GC  
[19-21] using sliding window. Here GC is estimated 

for the generated signal that resembles the modified 
FC1 signal with respect to the source signal F1.  
Fig. 3a and 3b shows the results obtained using a 
window size of 2 seconds and 400 ms, the order is 19. 

 
 

 
 

Fig. 1. Connectivity matrix GC for subject S001R01 [18], 
the baseline eyes open experiment run for order 19. 
 
 
We can see that the estimated connectivity changes 

in time, where, as expected, estimated values deviate 
from the true connectivity, mostly at the transitions. 
When using lower window size, the reliability of 
estimated models as part of computing GC is low, 
leading to high volatility and low reliability. This 
shows the limited ability of the GC measure to find the 
time of connectivity changes and the need for further 
research in this direction. 

 
 

 
 

Fig. 2. Synthetically generated signal and true GC values (in intervals). The model order used was 19. 
 

 
 

Fig. 3. Dynamic GC values estimated using sliding window analysis and a window size of 2 seconds (a) and 400 ms (b). 
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4. Conclusions 
 

This work presents the procedure for generating a 
synthetic signal suitable for analysis of dynamic 
properties of directional connectivity methods. The 
signal is generated by reconstruction from real signals 
based on regression model coefficients. Using the 
proposed method, we have the capability to manage the 
influence of source signals by integrating an additional 
temporal connectivity parameter K, which can 
dynamically vary in time, thus determining the 
dynamics of true connectivity. This method assures 
that the generated synthetic signals are highly realistic. 
When testing the dynamic connectivity methods, the 
connectivity shall be observed between the generated 
signal R’ and the source signal S’. Results shall be 
compared with the weighting signal K. We have 
demonstrated this for dynamic GC estimation using a 
sliding window. Here the problem is in the selection of 
the window size. Large windows are expected to result 
in poor temporal resolution of estimated dynamic 
connectivity, while the use of narrow windows could 
harm the accuracy of auto-regressive models leading 
to high variability in estimated dynamic connectivity. 
Finding the optimal window size or comparing 
different methods requires the knowledge of true 
connectivity changes, which are only known when the 
signals are generated synthetically. Here it is important 
that generated signals have realistic properties which 
are obtained from real signals. Our proposed method 
fulfills both requirements. Therefore, it can be 
concluded that the proposed method for generating 
synthetic test signals is suitable for testing and 
development of dynamic connectivity methods. 
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Summary: Parkinson's Disease (PD) has an undeniable influence on patients, frequently resulting in a decline in motor 
function and impaired cognitive control. Brain connectivity is a revealing measure of cerebral mechanisms. Most studies in 
this field focus on the analysis of functional connectivity. The originality of our contribution lies in the characterization of 
effective connectivity in PD patients during the performance of a specific cognitive task. To do this, it is crucial to identify 
high-dimensional multivariate autoregressive models. We propose here a low-cost solution based on LASSO-type regression, 
for which the model order and regularization parameter are estimated automatically. Effective connectivity reveals an increased 
trend towards impulsive action selection and suggests degeneration of visual and information processing functions in  
PD patients. 
 
Keywords: Parkinson’s disease, HR-EEG, MVAR model, eBIC-LASSO, Genetic algorithm, Effective connectivity. 
 
 
1. Introduction 
 

Parkinson’s Disease (PD) is a neural degenerative 
disease. Patients with PD suffer from deleterious 
effects on motor function such as rigidity and 
bradykinesia [1] and cognitive decline symptoms also 
affect the patient's life extremely severely [2]. One of 
the main cognitive difficulties in people with PD is an 
impaired ability to adapt effectively and quickly to 
changes in the environment, which was specifically 
classified as Cognitive Action Control (CAC) change. 
The Simon task is a conflict task which is widely used 
to evaluate CAC performance [3]. Numerous studies 
confirmed that cognitive function is associated with 
communication in brain regions and that changes in 
these brain networks are associated with neurological 
disorders [4]. Studying the interactions between brain 
regions during CAC will help clarify how  
neuro-degenerative diseases such as Parkinson’s 
disease alter cognitive function [5]. 

In previous studies, connectivity using static fMRI 
was used to assess disease [6, 7]. However, 
ElectroEncephaloGraphy (EEG), which has excellent 
temporal resolution, is more suitable for assessing PD 
to evaluate changes in brain function during short time 
cognitive tasks. To investigate certain changes in brain 
regions and to map the neural network in PD patients, 
previous studies have focused on brain changes in 
functional connectivity patterns [8]. As a consequence, 
to investigate flow changes in brain regions and to map 
the neural network in PD patients, we have considered 
Effective Connectivity (EC) [9], which refers to causal 
interactions between brain regions. 

Effective connectivity is generally implemented 
with the MultiVariate AutoRegressive (MVAR) model 

which is proved to be efficient and flexible in neural 
time series prediction [10]. Least Absolute Shrinkage 
Selection Operator (LASSO) regression was selected 
to identify the MVAR model with sparsity [11], since 
the brain is not fully active during a given activity [12]. 
Since the Genetic Algorithm (GA) [13] has an 
excellent capability of searching global extrema, it was 
employed to estimate the order of the MVAR model 
and the penalty parameter of the LASSO regression by 
minimizing an information criterion. We also 
conducted an analysis of cognitive degeneration 
through CAC performance change in PD patients, and 
alternation of EC network in brain. 

 
 

2. Materials and Method 
 
2.1. Data Acquisition 
 

Ten Healthy Control (HC) subjects (5 males,  
5 females) aged between 45 and 70 years (mean = 61.7, 
sd = 7.3) with 13.5 averaged education years (sd = 3.6) 
and ten PD patients (5 males, 5 females) aged between 
45 and 73 years (mean = 60.4, sd = 7.3) with  
12.5 averaged education years (sd = 3.2) were enrolled 
in the study. HC subjects and PD patients did not 
significantly differ in age, gender or education. 

All participants underwent a neuropsychological 
assessment, which showed that they did not have 
severe cognitive deficits. In addition, all participants 
were free from moderate or severe psychiatric 
symptoms and did not have any present or past 
neurological pathology (other than PD for patients). 

Participants were asked to perform a color version 
Simon task, which is a conflict task, widely used to 
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evaluate CAC performance for both congruent and 
incongruent tasks. High Resolution (HR) EEG signals 
of 2 s length and sampled at 1000 Hz were recorded 
using 256 channels. A set of 12000 trials of congruent 
and incongruent tasks was considered. This protocol 
was approved by a national ethics committee (CPP  
ID-RCB: 2019-A00608-49; approval number: 
19.03.08.63626). This study was conducted in 
accordance with the declaration of Helsinki. 
 
 
2.2. Method 
 

We performed pre-processing on EEG signals in 
Brainstorm toolbox [14]. Firstly, an offset removal was 
applied. Secondly, a notch filter at 50 Hz and a FIR 
band pass filter from 1 to 100 Hz were applied. 
Thirdly, bad channels selected under visual inspection 
were removed or replaced using interpolation. Next, 
eye blinks and muscle artifacts were removed by 
Independent Component Analysis (ICA). Then, the 
signals were attributed to epochs relative to the 
stimulus onset from -700 ms to 1200 ms. Eventually, 
poor trials with excessive remaining noise  
were excluded. 

EC is generally computed from cortical electrical 
activity. The latter can be derived by solving the EEG 
inverse problem. In the present study, we used the 
well-known weighted Minimum Norm Estimate 
(wMNE) algorithm. Next, the brain was parcellized 
into 148 regions of interest using Destrieux atlas [15]. 
Thus, a MultiVariate AutoRegressive (MVAR) model 
was fitted to these 148-dimensional signals. 

The EEG signal can be considered as one 
realization of a 𝑝𝑝-order and 𝑁𝑁-sample MVAR 
sequence {𝒙𝒙(𝑛𝑛)}: 
 

 𝒙𝒙(𝑛𝑛)  =  ∑ 𝑨𝑨ℓ 𝒙𝒙(𝑛𝑛 − ℓ) + 𝜺𝜺(𝑛𝑛)𝑝𝑝
ℓ = 1 , (1) 

 
where {𝜺𝜺(𝑛𝑛)} is an 𝑀𝑀-dimensional white Gaussian 
noise sequence with zero mean and covariance matrix 
𝜎𝜎2𝑰𝑰 and where 𝑨𝑨ℓ is the ℓ-th submatrix of the 
(𝑀𝑀 × 𝑝𝑝𝑝𝑝) coefficient matrix 𝑨𝑨 =  [𝑨𝑨1,𝑨𝑨2, . . . ,𝑨𝑨𝑝𝑝]. 
We assume in the sequel that the 𝑝𝑝 matrices 𝑨𝑨ℓ are 
linearly independent. The matrix 𝑨𝑨 can be estimated 
using the Least Squares method [16] by minimizing the 
following cost function based on the Frobenius norm: 
 

 𝑓𝑓(𝐴𝐴)  =  ‖𝑿𝑿 − 𝑨𝑨𝑨𝑨‖𝐹𝐹2 , (2) 
 
with 𝑿𝑿 =  [𝒙𝒙(𝑝𝑝 + 1),𝒙𝒙(𝑝𝑝 + 2), … ,𝒙𝒙(𝑁𝑁)] and 
 

𝑩𝑩 =  �

𝒙𝒙(𝑝𝑝) 𝒙𝒙(𝑝𝑝 + 1) ⋯ 𝒙𝒙(𝑁𝑁 − 1)
𝒙𝒙(𝑝𝑝 − 1) 𝒙𝒙(𝑝𝑝) ⋯ 𝒙𝒙(𝑁𝑁 − 2)

⋮ ⋮ ⋱ ⋮
𝒙𝒙(1) 𝒙𝒙(2) ⋯ 𝒙𝒙(𝑁𝑁 − 𝑝𝑝)

�, (3) 

 
notice that we have 𝑁𝑁 ≥  𝑝𝑝𝑝𝑝. Then, the LS solution is 
given by: 
 

 𝑨𝑨 =  𝑿𝑿𝑩𝑩𝑇𝑇(𝑩𝑩𝑩𝑩𝑇𝑇)−1 (4) 
 

In the case of high-dimensional data, the MVAR 
model identification requires regularized solutions 
such as the LASSO regression [12], which promotes 
sparsity, since LS is proved to fail [17]: 

 
 𝑔𝑔(𝑨𝑨)  =  1

2
‖𝑿𝑿 − 𝑨𝑨𝑨𝑨‖𝐹𝐹2 + 𝜆𝜆‖𝑨𝑨‖1, (5) 

 
where 𝜆𝜆 is a hyperparameter balancing between the 
data fitting term and the penalty term. The Alternating 
Direction Method of Multiplier (ADMM) algorithm 
[18] was used to minimize 𝑔𝑔 based on the following 
Lagrangian function: 
 

 
ℒ(𝑨𝑨)  =  

1
2
‖𝑿𝑿 − 𝑨𝑨𝑨𝑨‖𝐹𝐹2 + 𝜆𝜆‖𝑨𝑨‖1 + 

+ 𝜌𝜌
2
‖𝑪𝑪 − 𝑨𝑨‖𝐹𝐹2+< 𝑽𝑽,𝑨𝑨 − 𝑪𝑪 >  

(6) 

 
where 𝑪𝑪 matrix is an additional variable related to 𝑨𝑨 
by the equality constraint 𝑨𝑨 =  𝑪𝑪, introduced in 
splitting methods such as ADMM to facilitate the 
minimization. 𝜌𝜌 was set to 1 and where 𝑪𝑪, 𝑨𝑨 and 𝑽𝑽 
were initialized as zero matrices of size (𝑀𝑀 × 𝑝𝑝𝑝𝑝). 

Regarding the update rule of 𝑨𝑨, it is derived by 
cancelling the gradient of ℒ with respect to 𝑨𝑨, which 
leads to: 

 

 𝑨𝑨(𝑘𝑘+1)  =  
= �𝑨𝑨𝑩𝑩𝑇𝑇 + 𝜌𝜌𝒁𝒁(𝑘𝑘) − 𝑽𝑽(𝑘𝑘)�(𝑩𝑩𝑩𝑩𝑇𝑇 + 𝜌𝜌𝑰𝑰)−𝟏𝟏 (7) 

 
Consequently, the update rule of 𝑪𝑪 is given by: 

 
 𝑪𝑪(𝑘𝑘+1)  =  𝑆𝑆𝜆𝜆/𝜌𝜌�𝑨𝑨(𝑘𝑘+1) + 𝑽𝑽(𝑘𝑘)/𝜌𝜌�, (8) 

 
where 𝑆𝑆 is the soft-thresholding operator: 
 

(𝑆𝑆𝜂𝜂(𝑨𝑨))𝑖𝑖1,𝑖𝑖2  =  �
𝐴𝐴𝑖𝑖1,𝑖𝑖2 − 𝜂𝜂 if 𝐴𝐴𝑖𝑖1,𝑖𝑖2 > 𝜂𝜂

0 if �𝐴𝐴𝑖𝑖1,𝑖𝑖2� ≤ 𝜂𝜂
 𝐴𝐴𝑖𝑖1,𝑖𝑖2 + 𝜂𝜂 if 𝐴𝐴𝑖𝑖1,𝑖𝑖2 < −𝜂𝜂

, (9) 

 
with 𝐴𝐴𝑖𝑖1,𝑖𝑖2 the (𝑖𝑖1, 𝑖𝑖2)-th component of matrix 𝑨𝑨. The 
update rule of the multiplier is given using a  
gradient ascent: 
 

 𝑽𝑽(𝑘𝑘+1)  =  𝑽𝑽(𝑘𝑘) + 𝜌𝜌�𝑨𝑨(𝑘𝑘+1) − 𝑪𝑪(𝑘𝑘+1)� (10) 
 

In order to select the true MVAR model order and 
an appropriate penalty parameter for LASSO, the 
extended Bayesian Information Criterion (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) has 
been minimized [19]: 
 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆,𝑝𝑝)  =  𝑙𝑙𝑙𝑙(‖𝑿𝑿 − 𝑨𝑨𝑨𝑨‖𝐹𝐹2) + 𝐶𝐶𝑇𝑇𝑑𝑑𝑑𝑑, (11) 
 
where 𝑑𝑑𝑑𝑑 is the number of non-zero values in the 
sparse matrix 𝑨𝑨 obtained from LASSO optimization 
and 𝐶𝐶𝑇𝑇  =  𝑙𝑙𝑙𝑙(𝑁𝑁) + 2𝛾𝛾𝛾𝛾𝛾𝛾(𝑀𝑀𝑀𝑀). We calculated 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
with 𝛾𝛾 =  0.5. Classically, the 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 cost function is 
minimized by scanning candidates in a given grid 
which could lead to expensive computational time for 
high dimensional MVAR models. 
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To overcome this drawback, in this contribution, 
we propose to minimize the cost function Eq. (11) by 
means of a Genetic Algorithm (GA). 

The order 𝑝𝑝 ∈ {1, … ,25} of the MVAR model and 
the penalty parameter 𝜆𝜆 ∈ [0.1; 100] of LASSO were 
chosen as parents. To ensure that as many 
combinations as possible were considered, the 
crossover probability, the mutation probability and the 
generation gap were set to 80 %, 5 % and 50 %, 
respectively. Based on the 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 values of each 
iteration, fitness values were assigned in equal 
proportions. We adopted the Roulette Wheel Selection 
approach to select the retained parental genes. The 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 values were recorded for each generation. The 
genetic algorithm terminates when the same optimal 
solution is obtained in 30 consecutive iterations or 
when 100 generations are reached. 

To analyze effective connectivity, we refer to the 
Partial Directed Coherence (PDC) [20] computed in 
pairs across the 148 regions and averaged over the beta 
band ([12-25] Hz) relevant in PD, where motor units 
oscillate strongly [21]. This measure is computed from 
the Fourier transform of the MVAR coefficients: 
 

 𝑨𝑨�(𝑓𝑓)  =  ∑ 𝑨𝑨ℓ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑗𝑗2𝜋𝜋𝑓𝑓ℓ𝛥𝛥𝛥𝛥)𝑝𝑝
ℓ = 1 , (12) 

 
where 𝛥𝛥𝛥𝛥 is the sampling period. The PDC causality 
measure is defined as: 
 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖1,𝑖𝑖2(𝑓𝑓)  =  
𝐴𝐴�𝑖𝑖1,𝑖𝑖2(𝑓𝑓)

�∑ �𝐴𝐴�ℓ,𝑖𝑖2(𝑓𝑓)�2𝑀𝑀
𝑘𝑘 = 1

  (13) 

 
The workflow of the proposed approach is depicted  

in Fig. 1. 
 
 

3. Results and Discussion 
 

Partial directed coherence was computed using  
270 trials per task (congruent vs incongruent) per 
participant after rejecting bad trials. Given the 
(148×148) PDC matrix corresponding to the Destrieux 
anatomical parcellation, we applied a 0.3 threshold to 

keep the most significant flow directions in the brain. 
We were interested in comparing connectivity in PD 
patients and HC subjects. 

 

 
 

Fig. 1. Workflow of the proposed approach. 
 

Compared to HC subjects, the connectivity of PD 
patients decreased from transverse frontopolar gyri 
and sulci to front-marginal gyrus and sulcus. 
Conversely, we observed an increase in connectivity in 
PD patients from the middle-posterior part of the 
cingulate gyrus and sulcus to the posterior-dorsal part 
of the cingulate gyrus in both congruent and 
incongruent conditions. The connectivity (i) from the 
superior segment to the anterior segment of the circular 
sulcus of the insula, (ii) from the lateral aspect to the 
planum polar of the superior temporal gyrus and  
(iii) from the superior frontal gyrus to the  
middle-anterior part of the cingulate gyrus and sulcus 
was particularly high in the incongruent condition, 
while it decreased in the congruent one. It is worth 
noting that at the subject level, the connectivity 
changed significantly: contrarily to the congruent 
condition (14 %), the number of disappearing and 
emerging flow directions in the incongruent condition 
was high (37.5 %) when passing from HC subjects to 
PD patients (see Fig. 2). The number of connectivity 
changes in the incongruent task was almost twice that 
of the congruent task. The connections that 
disappeared were found mainly in the temporal lobe 
and occipital lobe, while the connections that appeared 
were found mainly in the prefrontal and  
temporal lobes. 

 
 

 
 

Fig. 2. Changes in effective connectivity when passing from HC subjects to PD patients in both tasks.
 
 

In this study, we aimed to explore how the 
networks change in PD patients in comparison with 
HC subjects during CAC. Clearly, the various EC 
modifications in specific regions illustrate some 

electrophysiological changes in PD patients. Our 
results showed that PD patients had increased EC in 
incongruent condition, which could suggest that they 
had to engage certain brain regions more importantly 
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than HC subjects. The changes in EC in occipital lobe 
and temporal lobe are noticeable in both conditions, 
which could be associated with the impairment of 
visual cognition in PD patients and information 
processing [22, 23]. Furthermore, the changes in 
frontal lobe might be associated with the change of 
CAC, observed in PD patients, according to [8]. 
However, this study didn’t involve enough patients, 
which prevents us from investigating 
connectivity/behavioral performance and thus from 
elaborating firm conclusions. 
 
 
4. Conclusion 
 

This paper proposed a robust low-cost method 
based on a LASSO-type regression to compute 
simultaneously the order and the coefficients of  
high-dimensional MVAR models. The MVAR model 
order and regularization parameter were estimated 
automatically by minimizing an information criterion 
by means of a genetic algorithm. Such an approach 
allowed us to compute efficiently brain effective 
connectivity. However, improvements could be 
considered. Physiological hypotheses could be 
introduced to better target the connections of interest. 
Since genetic algorithms are time consuming, we plan 
to estimate the MVAR order simultaneously with the 
coefficients through a regularized approach. In this 
study which used the Simon task we showed for the 
first-time strong changes of EC in PD patients 
compared to HC subjects. In the future, it will be 
necessary to investigate more patients in order to 
assess if changes in EC explain the behavioral changes 
associated with PD. 
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Summary: Anomaly acoustic cues like siren sounds, when undetected, could lead to road safety issues like collisions or 
accidents. Auditory perception systems are resource bound when deployed on power constrained sensory edge devices. Spiking 
neural networks (SNN) premise brain-like computing with high energy-efficiency. This work presents a quantitative analysis 
of the variation of sliding window on the performance of acoustic anomaly detection task for siren sounds. We perform FFT 
based pre-processing and employ Mel-spectrogram features fed as input to the recurrent spiking neural network. SNN model 
in this work comprises of leaky-integrate-and-fire (LIF) neurons in the hidden layer and a single readout with leaky integrator 
cell. The non-trivial motivation of this research is to understand the effect of encoding behavior of spiking neurons with sliding 
windows. We conduct experiments with different window sizes, and the overlapping ratio within the windows. We present our 
results for performance measures like accuracy and onset latency to provide an insight on the choice of optimal window. 
 
Keywords: Spiking neural networks, Acoustic perception, Anomaly detection, Siren sounds, Sliding window. 
 
 
1. Introduction 
 

Spiking neural networks closely mimic the sparse 
and asynchronous biological information processing. 
The models in SNNs are naturally operated in terms of 
time and are based on the principles of brain-inspired 
computing. Temporal perception of complex auditory 
scenes like speech signals is processed within the range 
of tens of hundreds of milliseconds (ms) [1], 
contributing to our investigation on temporal 
processing of siren audio sequences with the naturally 
adept, spiking neural networks. 

Well known approaches look at the problem of 
siren sound detection using deep learning [2-6]. 
Authors in [6], extensively explore 2D CNN to detect 
siren signals based on the spectrum that is generated 
by combining multiple windowed FFT to generate 
image used as an input to the network, this 
subsequently leads to higher computational effort. 
SNNs on the other hand, exhibit temporal processing 
directly in their neurons, this motivates us to exploit 
time series tasks efficiently. Furthermore, with the 
advent of neuromorphic hardware [7, 8], these  
small-scale networks with sparsity introduced through 
the optimal choice of time constants could potentially 
save orders of magnitude of energy as shown in [7]. 

This motivates us to take a closer look at the  
pre-processing stage and the way of optimizing siren 
detection task. This work attempts to understand the 
intricacies of variation of sliding windows on the 
performance of temporal detection of siren sounds in 
order to trade-off between the accuracy and onset 
latency of prediction. We intend to model spiking 
neurons for real-time applications by inferring the 
impact of windowing in terms of encoding 
information. Through this empirical study, we aim to 
investigate the optimal window size with and without 

overlapping windows and encapsulate its impact on the 
task performance. We try to address the lack of 
understanding of the relation between neuronal decays 
and sliding windows. The remainder of this paper is 
organized as follows: Section 2 presents literature 
review on temporal detection of siren sounds and 
sliding windows for employed in different tasks in 
detail. We present the method employed using sliding 
windows and SNN training approach in Section 3. We 
detail the experimental setup for empirical study and 
subsequently present the results in Section 4. Finally, 
in Section 5 and 6 we present an outlook of the work, 
discussion and conclusion. 
 
 
2. Related Work 
 

Deep learning models namely – DNN (deep neural 
networks), CNN (convolutional neural networks), 
LSTM (long short-term memory) and hybrid  
CNN-LSTM are employed to solve human activity 
recognition (HAR) in [9]. Authors study the effect of 
sliding windows for preprocessing time-series data 
using four models and show improvement in accuracy, 
latency, and processing costs. Furthermore, authors in 
[10] provide an extensive characterization of 
windowing technique. They show the impact of 
diverse window sizes for HAR. Other interesting 
techniques like adaptive sliding windows are studied 
in [11] for assisted living application. Authors in [12], 
explore pose pattern recognition for sensors and extend 
the study to evaluate the impact on sliding windows. 
Their study is in alignment with the prior research that 
shows introduction of overlapping windows increases 
the accuracy of pattern recognition. Overall, through 
literature study we garner results on the significance of 
the choice of optimal window size and sliding 
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windows. To the best of authors knowledge, there is 
scarce research on sliding window variation for siren 
detection task using SNNs. Through this empirical 
study, we attempt to understand the impact of sliding 
windows on the performance for siren detection task 
using SNNs. We evaluate the relation between spiking 
neurons and the sliding windows in terms of accuracy 
and onset latency. 

Neuroscientific study has shown that leak channels 
exist in various synaptic transmissions in visual cortex 
[13] and in sodium ion leak channels [14]. On 
neuromorphic datasets NMNIST and SHD, for 
different spiking neurons, leakages are studied for 
spatio-temporal pattern recognition in [15]. Authors in 
[15] explore the impact of synaptic and membrane time 
constants for three different spiking neuron models on 
pattern recognition and conclude the significance of 
neuronal leakage for both temporal features and 
explicit presence of recurrent connections. Authors in 
[16] have shown the importance of leak for LIF 
neurons in terms of robustness to noise by acting as 
high frequency filter. In parallel, authors also comment 
on the statistical relationship of sparsity introduced 
through leaky models and hardware efficiency through 
synaptic operations. Here, we aim to understand if 
there is a relation between sliding windows and 
neuronal decays. This work attempts to partially 
answer this question by conducting an empirical 
evaluation of spiking neuron time constants in 
recurrent SNNs for acoustic anomaly detection. 
 
 
3. Method 
 

We use artificial siren sequences generated from 
the publicly available siren dataset [17] to train our 
models. The artificial audio sequences are sampled at 
a sampling frequency of 48 kHz. We employ a small 
FFT window to minimize the hardware effort. Taking 
into account that our signal of interest, i.e., siren 
sounds, have a fundamental frequency between 400 Hz 
to 600 Hz, we start with a window size of 4096 which 
corresponds to 85.33 ms and we reduce window size 
further below to 2048, …, 512 for this empirical 
evaluation. 

Windowing is applied on the audio sequences of  
30 s before FFT calculation as shown in Fig. 1. Feature 
extraction is carried out using Mel spectrogram. The 
input to the hidden layer of SNN is fixed to 64 Mel 
channels. The SNN has a topology of 64-100-1 with 
recurrent connections in the hidden layer. We keep 
constant parameters (structural/topological) 
throughout the experiments for homogeneity. 
 
 
3.1. Data 
 

Dataset in [17] is comprised of siren sounds and 
road noise. The dataset consists of different types of 
sirens sounds namely wail, yelp, hi-lo. We modify the 
publicly available dataset to perform temporal 
predictions using artificially generated audio 

sequences. More specifically, we utilize single channel 
siren and traffic noise recordings from the dataset 
presented in [17] and split the samples of each class 
with an 80/20 ratio into train and validation samples. 
All samples are resampled to a shared sample rate of  
48 kHz. Based on the noise samples, a continuous 
sequence is generated. To each of these sequences of 
30 s duration, a single siren sound is added at a random 
time with random length. To ensure accurate 
measurement of onset latency and network stability we 
enforce the first 1 s of the artificial sequences to 
exclude siren signals. 
 
 

 
 

Fig. 1. Block diagram highlights the sliding windows  
on acoustic anomaly sequences. Different window sizes are 
provided in time slices as an input to FFT; 64 Mel features 
are extracted to inject as current input to the recurrent SNN. 

 
 

3.2. Feature Extraction 
 

We use windowing technique to deconstruct 
temporal features into spatial features to analyze 
different frequencies. Hann window is used for 
smoothening of edges in FFT calculations. In this 
work, since our focus is on understanding the 
performance of windowing for siren detection task, we 
use sliding windows with and without overlapping 
windows. We use log-scaled Mel spectrograms as 
input features to our SNN model. The window length 
and hop length are varied in the order of power of 2 to 
obtain optimal design choices for better performance. 
For the Mel transformation, we impose a lower 
frequency limit of 50 Hz to cover the noise signals so 
that the network could easily differentiate between 
noise characteristics. The upper limit is set according 
to respective window size. For example, w = 512 
signals extracted are only within frequency 0-513 Hz. 
We consider a total of 64 Mel channels to constrain the 
feature range. Afterwards, the features are converted to 
dB scale and min-max normalization is applied to each 
time slice. 
 
 
3.3. Network Architecture 
 

SNN is designed as in [18] shown in Fig 2 
comprises of a hidden spiking layer and a single 
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readout for predicting siren or not. The information 
processing in the hidden layer of the proposed model 
is in terms of spikes. LIF neurons are analogous to the 
biological neuronal processing. When the input 
stimulus crosses the threshold voltage, neuronal firing 
occurs. We aim to understand the effect of sliding 
windows and the neuronal processing on network 
predictions. Therefore, we conduct experiments with 
various synaptic (τmem) and membrane (τsyn) time 
constants of the neurons to evaluate the impact of 
sliding windows. 
 
 

 
 
Fig. 2. Overview of the recurrent SNN used in this work is 
highlighted. The features extracted are given as 64 input 
channels to the SNN. Spiking architecture comprises  
of 100 hidden neurons with recurrent connections  
and a single readout neuron for siren predictions. 

 
 

The parameters set for the evaluation of siren 
detection task are described in Table 1. Surrogate 
gradient based method is used to approximate the 
derivative of the LIF recurrent cell [19]. We employ a 
Leaky-integrator (LI) cell as a readout neuron, which 
has continuous-valued output. We train SNNs used in 
this work on Norse [20], an extension of PyTorch [21]. 
 
 

Table 1. Description of network structure and LIF  
neuron parameters. 

 
Network structure 64-100-1 
Threshold voltage 1 V 
Reset potential 0 mV 
Membrane time constant 2 ms 
Synaptic time constant 2 ms 
Refractory period 0 ms 

 
 

The differential equations and dynamics of current-
based LIF neuron is extensively discussed and 
presented in equations (1), (2) and (3) in [19]. Neurons 
have a membrane potential that decays with a 
membrane time constant (τmem). Synaptic currents 
follow specific temporal dynamics. The exponentially 
decaying current triggered by pre-synaptic input leads 
to the second dynamics of LIF neurons. This 
exponential decay of synapses is termed as synaptic 
time constant (τsyn). The specific dynamics of CUrrent 
BAsed (CUBA)- LIF neurons for exponential decay of 
synaptic currents and membrane potential are 
presented in [15] in a set of equations (3) and (4). 

4. Experiments and Results 
 
4.1. Experimental Setup 
 

We employ surrogate gradient method [19] to train 
our recurrent SNN model. In this work the model is 
trained for 100 epochs, with a batch size of 16 on 
Nvidia V100. Adamax optimizer is applied with a 
learning rate of 1×10-3. 

1st experiment setup: We set constant parameters 
for LIF neurons in the hidden layer of the SNN. 
Threshold voltage of neuron is set to 1 V, both the time 
constants (membrane and synaptic) are set to 2 ms. We 
design experiments with variation in window length 
 (w = 2X, i.e. 4096, 2048, ..., 512) and hop lengths (h). 
We choose three setups for our evaluation, h = w (no 
overlap), h = 0.5w (50 % overlap) and h = 0.25w  
(75 % overlap). 

2nd experiment setup: We perform experiments to 
understand the correlation between sliding windows 
and neuronal processing speed. Membrane (τmem) and 
synaptic time (τsyn) constants are a variable parameter 
with different window sizes and hop sizes to obtain 
results for accuracy and onset latency for the siren 
prediction task. We further investigate the impact of 
windowing without any overlaps for different time 
constants to obtain an optimal window size. 
 
 
4.2. Effect of Overlapping Windows 
 

The focus of this work is to demonstrate the effect 
of sliding windows with and without overlap on 
accuracy and onset latency for siren predictions. 

As we expected and evident from Fig 3(a), having 
overlapping windows for the same window size helps 
to improve the training accuracy. However, we need to 
keep in mind that we need to feed the input more 
frequently to the network, e.g., for h = 0.5w, network 
needs to process input twice faster. The increase in 
performance for overlaps within sliding windows is 
due to granularity of information which increases the 
focus on signal of interest. A slight drop in accuracy 
with smaller windows, and for their respective 
overlapping hop lengths is observed. This effect is 
observed in the window with sample size of 512 with 
hop length h = 0.5w, it corresponds to a frequency 
range of 255 Hz. Siren sounds have a typical 
characteristic frequency of 400-600 Hz. The covered 
frequencies are below the signal of interest for window 
sizes below 256. 

We investigate the time to detect siren sounds using 
the onset of events by predicting the neuronal state 
change. This gives us an intuition of how the fine 
temporal resolution of the spiking neurons influences 
the latency. Hence, we design experiments to vary the 
sliding window with overlapping and fixed windows 
and measure the time to first event, given an audio 
sequence is being processed within the ground truth 
(label). We observe the latency values of validation 
samples in the last epoch and average over batch size. 



6th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2024),  
17-19 April 2024, Funchal (Madeira Island), Portugal 

115 

As observed in Fig 3(b), the introduction of 
overlapping windows has a modest influence on 
latencies within each window. It is our understanding 
that the hop length introduces faster processing, 
through reduction in latency. Based on processing time 
alone, we expect 2× reduction on latency h = 0.5w, 4× 
for h = 0.25w. A latency improvement of 5× is 
achieved for window size of 4096, this is explainable 
from the neuronal sensitivity to detect siren sound 
events in windows with increased information 
granularity. 
 
 

 
(a) 

 

 
(b) 

 
Fig. 3. Experimental results for sliding window variation  
on the siren detection task with neuron time constants  
as 2 ms (a) Introduction of hop length improves  
the prediction accuracy, (b) Onset latency reduces  
for overlapping windows. 
 
 
4.3. Relation Between Sliding Windows and Time  
       Constants 

 
We explore the relation between neuronal time 

constants of charge based LIF and their impact on the 
performance with sliding windows with overlaps. To 
garner results in this direction, we perform 
experiments with variation in overlap ratios for a 
window size of 4096 with different τmem and τsyn 
ranging from 1ms to 100 ms. From Fig 4(a), a clear 
trend is observed that the accuracy is best performing 

for neuronal time constants ranging between 1-2 ms. 
Higher the time constants, the neurons decay at a much 
slower rate and this effect leads to slight degradation 
in accuracy for overlapping windows. Nearly 5 % 
accuracy drop occurs for h = 0.25w for higher time 
constants due to the reason that fast responses or high 
sensitivity of neurons with slower membrane decay 
leads to missing of the crucial information within 
overlapping windows. Whereas for smaller time 
constants, this is reflected as a benefit in terms of 
modest accuracy deviation. With the introduction of 
overlapping windows (h = 0.5w, h = 0.25w), the speed 
improves 2.4× steadily as seen in Fig 4(b). Another 
interesting trend is seen in the onset latency. It is 
indicative of a linear trend for latency and time 
constants. Smaller time constants lead to higher 
accuracy and nearly 4× processing speed with the 
addition of overlapping windows for a fixed window 
size of 4096. 

 
 

 
(a) 

 

 
(b) 

 
Fig. 4. Time constants (τmem ) and (τsyn) variation for siren 
detection task with w = 4096 and overlapping windows.  
(a) Introduction of hop length improves the prediction 
accuracy for different smaller time constants (b) Onset 
latency reduces for smaller time constants and overlapping 
windows. 
 
 

Secondly, we vary time constants with a variable 
window size of 4096, ..,512 and without overlaps to 
analyze the correlation between neuronal decays for 
windowing. The accuracy is higher for window sizes 
ranging between 85 ms – 50 ms and it worsens with 
smaller windows. From Table 2, it is evident that for 
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smaller constants with an optimal window  
85.33 ms – 42.66 ms, best performance is achieved. 
 
 
4.4. Feature Resolution for Sliding Windows 

 
We demonstrate the feature resolution using 

different sliding windows on log Mel spectrogram as 

depicted in Fig. 5. From the experimental setup 
detailed in Section 4.1, the window and hop sizes are 
varied to understand the behavior of the network. LIF 
parameters and time constants are set according to 
Table 1. Whereas the panels represent the window 
sizes with different overlapping windows to provide an 
overview on the Mel spectrogram features and 
corresponding siren predictions. 

 
 

 
 
Fig. 5. Demonstration of feature resolution on Mel spectrogram for sliding window variation on the siren detection task 
(presence of siren is highlighted in red). (a) First two rows: w = 4096 (h = w); (b) Next two rows: w = 2048 (h = 0.5w);  
(c) Last two rows: w = 1024 (h = 0.25w). The panels in each row showcase stages of information processing in the network 
pipeline. 
 
 

Table 2. Accuracy values for different time constants τ = τmem = τsyn across variation in window sizes with no overlap. 
Smaller time constants and larger windows tend to achieve accurate siren predictions. 

 
H = W τ = 1 ms τ = 2 ms τ = 4 ms τ = 10 ms τ = 100 ms 
4096 87.1 % 90.9 % 86.4 % 85.6 % 80.8 % 
2048 89.2 % 88.9 % 88.1 % 87.4 % 83.2 % 
1024 90.0 % 88.7 % 89.4 % 86.0 % 81.7 % 
512 88.2 % 87.3 % 86.1 % 86.0 % 82.6 % 

 
 

With w = 4096 and h = w, in the first row the 
features of interest are in lower frequency range due to 
higher energy concentration. With lower window sizes 
and smaller overlaps (w = 2048, h = 0.5w) the 
prediction strength gets stronger due to finer resolution 
in data points. It is interesting to note the increased 
spike activity in the hidden layer of SNN. For w = 1024 
(h = 0.25w), we see a noticeable difference in feature 
resolution due to increased granularity with 
distinguishable noise and siren sounds. 

Overlap ratios lead to finer resolution and this is 
reflected in terms of spike activity which is observed 
to slightly increase. However, the focus of this work is 
not to examine the spike activity with different  
feature resolution. 
 
 
5. Discussion 
 

We trained recurrent SNN in different 
experimental setup to detect siren sounds on modified 

public dataset in [17] to firstly understand the impact 
of sliding windows on the task performance and 
secondly, to provide a basis for the correlation between 
sliding windows and the leaky behavior of LIF 
neurons. Our results are indicative of a performance 
boost in terms of accuracy using sliding windows with 
overlap. This is due to high data points within the 
overlaps and less probability to miss information. 
Interestingly, higher overlap ratio for hopping 
windows in smaller window regimes show best 
performance with 92.4±0.8 % accuracy closely 
matching the performance with larger window sizes. 
We particularly noted slight drop in accuracy with 
smaller windows below the signal of our interest (siren 
sounds). Therefore, we conclude that sliding windows 
with overlapping windows translate into improved task 
performance. Collectively, our results appear 
consistent with the body of literature on impact of 
sliding windows for various detection tasks. 

Research works show the significance of time 
constants of spiking neuron models to help improvise 



6th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2024),  
17-19 April 2024, Funchal (Madeira Island), Portugal 

117 

the performance of spatio-temporal pattern recognition 
task [15]. Neurons tend to show the same behavior that 
leakages exist in neuronal models as underpinned by 
biology [13, 14]. 

The relation between the leaky behavior of spiking 
neurons in terms of exponential decay as time 
constants and that of the sliding windows is understood 
step-by-step through experiments in this work. At a 
higher level of abstraction, we understand the variation 
of sliding windows and the impact on onset latency and 
accuracy. Due to the faster response time that occurs 
with smaller membrane and synaptic time constants, 
for overlapping windows the obtained accuracy is the 
highest and thus leads to faster processing speed. It is 
noteworthy, as the time constants fall in the range of 
audio sequences this adversely impacts the accuracy 
by nearly 10 % for overlap ratios of 75 %. We also note 
that for smaller time constants and smaller windows, 
accuracy and onset latency are 5.5 % higher and 2.4× 
lower respectively in contrast to higher time constants. 
 
 
6. Conclusion 
 

In this work, we trained recurrent SNNs for an 
auditory anomaly detection task. We conducted an 
empirical study on the impact of sliding windows on 
accuracy and onset latency. Through our preliminary 
results, we can conclude that the trade-off between 
accuracy and latency leads to an optimal window of 
30ms to 80ms for constant neuron parameters. We 
further performed experiments with time constants as 
a variable to reflect on the relation between spiking 
neurons and sliding windows. We observe for  
4× processing speed and with smaller time constants 
the accuracy is higher. 
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Summary: Gradient boosting trees such as lightGBM and XGBoost are widely used in real-world applications of machine 
learning when dealing with Tabular data. In addition, the data processing and feature engineering modules are computation-
heavy components in real-time inference applications of machine learning. This paper examines the performance of various 
data processing libraries (Pandas, NumPy, Polars, Dask, cuDF, Dask-cuDF) and machine learning frameworks (LightGBM, 
FIL, ONNX) within a multi-processor and GPU-accelerated environment. It includes a comprehensive benchmarking analysis, 
focusing on execution time and memory usage during inference tasks. Conducted on the Mind in a Box platform using datasets 
of varying sizes, the study specifically assesses the efficacy of these tools in data processing and GPU-accelerated inference. 
Significant findings reveal cuDF and Dask-cuDF effectiveness in handling large datasets and FIL's enhanced performance in 
machine learning inference, particularly with LightGBM and XGBoost models. This research provides essential insights for 
choosing the most suitable tools for GPU-accelerated data processing and inference. 
 
Keywords: GPU-accelerated data processing, Machine learning frameworks, Benchmarking study, Large dataset handling, 
Inference efficiency, cuDF optimization, FIL performance, Mind in a Box. 
 
 
1. Introduction 
 

In the realm of data science and machine learning, 
the integration of General-Purpose Graphics 
Processing Units (GPUs) has marked a paradigm shift, 
notably enhancing data processing and analysis. This 
paper embarks on a comprehensive benchmarking 
study of key Python data processing libraries (Pandas, 
NumPy, cuDF, Polars, Dask, Dask-cuDF) [1-3] and 
machine learning frameworks (LightGBM, XGBoost, 
FIL, ONNX) within a GPU-accelerated  
environment [4]. 

For data processing libraries, Pandas stands out for 
its user-friendly interface but often struggles when 
handling large datasets. NumPy, while excelling in 
numerical computations, falls short in advanced data 
manipulation capabilities. CuDF, optimized for GPU 
usage, significantly enhances performance but faces 
compatibility issues with Pandas. Dask, on the other 
hand, enables processing of large datasets efficiently, 
though its integration, especially with Dask-CuDF, can 
be complex to set up. Polars, another emerging library, 
offers high-performance data processing with a focus 
on speed and efficiency, but its ecosystem is not as 
mature as Pandas. Dask excels in parallel computing, 
allowing for scalable data processing, but its 
complexity and overhead can be challenging for 
simpler tasks Regarding machine learning 
frameworks, LightGBM is efficient for large datasets 
but less effective for small ones. 

XGBoost is versatile but resource intensive. FIL 
accelerates inference in tree-based models but is 
model-type specific. ONNX offers model 
interoperability but adds complexity in management. 
The study provides insights into selecting appropriate 
tools for specific tasks in GPU-accelerated  
research settings. 

Our evaluation, conducted on the Mind in a Box 
Catalyst™, meticulously measures performance across 
diverse data scales, focusing on execution time, 
memory usage, and scalability. This research not only 
serves as a practical guide for professionals dealing 
with large-scale data and complex model inferences 
but also lays the groundwork for future advancements 
in optimizing data processing workflows and machine 
learning model deployment leveraging the GPU in the 
era of big data. 

 
 

2. Experiments Setup and Methodology 
 

Our experiment was conducted in a Python-based 
data science lab environment (Kubeflow), utilizing 
JupyterLab and Jupyter Notebook. This environment 
is to be further described in relation to the experimental 
protocol in the full publication. The implementation 
process involved two key steps: 

In the first step, a variety of standard data 
operations were executed to assess the performance 
metrics of each library. These operations included 
counting, calculating means and standard deviations, 
summing, product calculations, and both arithmetic 
and lagging operations. In the arithmetic operation, the 
process involved dividing one set of numerical values 
by another within a NumPy array. 

In the second step, we benchmarked the model 
prediction performance of LightGBM, XGBoost, FIL 
(Forest Inference Library), and ONNX. Our approach 
included setting up a GPU-optimized environment 
using dask_cuda. LocalCUDACluster and 
dask.distributed.Client, and processing data with 
dask_cudf for efficiency. The methodology 
encompassed training LightGBM and XGBoost 
models via their respective Dask interfaces, with 
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performance metrics like time and memory usage 
monitored through a custom profile memory and time 
function. We also utilized the Forest Inference Library 
(FIL) for rapid GPU inference and converted models 
to ONNX format for interoperability assessment. This 
streamlined process enabled a comprehensive 
comparison of each framework's efficiency and speed 
in a GPU-accelerated context. 

Building on this foundational approach, a granular 
performance analysis is performed by documenting 
execution times and memory usage for both 
LightGBM and XGBoost across different 
computational environments: GPU, CPU, FIL, and 
ONNX. This detailed examination shows the distinct 
advantages of leveraging FIL for GPU inference, 
reflecting its superior memory efficiency and 
processing speed. Specifically, our results illustrate 
that FIL significantly enhances the performance of 
LightGBM and XGBoost, making it a sophisticated 
tool for applications demanding high-speed data 
processing and minimal memory footprint advantaging 
from GPU acceleration power when available. 

Our benchmarking focused on execution time, 
memory consumption, and GPU memory usage – 
crucial factors that influence real-time processing, 
indicate resource efficiency, and gauge each tool's 
effectiveness in leveraging GPU resources. By 
performing multiple runs per operation for each library 
and framework, we ensured the consistency and 
reliability of our results, laying a solid foundation for 
data-driven decision-making in selecting the optimal 

tools for data processing and machine learning tasks in 
GPU-accelerated environments. 

 
 

3. Performance Analysis and Results 
 

In our evaluation of Pandas, NumPy, cuDF, Polars, 
Dask and Dask-cuDF across datasets of 100000;  
2 million; and 15 million records, we observed distinct 
performance patterns. For smaller datasets, cuDF 
demonstrated high efficiency in execution time and 
memory usage, while Pandas and NumPy were faster 
but less memory efficient [4, 5]. 

Referencing the visual analytics provided in Fig. 1 
and Table 1, we can enhance our understanding of the 
performance dynamics among the different data 
processing libraries and machine learning frameworks. 

 

 
 

Fig. 1. Benchmarking of ML frameworks. 
 
 

Table 1. Data Processing Libraries Performance. 
 

 100 k 2 M 15 M 

Library Time(S) Memor
y (MB) 

GPU 
Memory 

(MB) 
Time(S) Memory 

(MB) 

GPU 
Memory 

(MB) 
Time(S) Memor

y (MB) 

GPU 
Memory 

(MB) 
cuDF 0.124 18.30 0.20 0.161 0.00 3.20 0.187 0.00 23.40 
Dask 0.517 0.64 N/A 2.461 20.95 N/A 10.225 146.33 N/A 

Dask-cuDF 1.483 3.57 0.0 0.509 13.71 25.6 0.969 63.59 68.0 
NumPy 0.094 7.09 N/A 0.313 352.42 N/A 4.071 1875.37 N/A 
Pandas 0.105 0.63 N/A 0.392 58.01 N/A 3.759 217.63 N/A 
Polars  0.152 15.65 N/A 0.859 213.60 N/A 4.524 1495.70 N/A 

 
 
The graphical representation in Fig. 1, which 

benchmarks ML frameworks including XGBoost, 
ONNX, LightGBM, and FIL, enables an immediate 
visual comparison of execution times and memory 
usage. Notably, it becomes evident that FIL, coupled 
with XGBoost, offers a compelling combination of 
speed and memory efficiency, as observed in the 
minimal execution times and reduced memory 
footprint [3, 6]. Meanwhile, Table 1 provides a 
meticulous breakdown of performance across different 
dataset sizes for Pandas, NumPy, cuDF, Polars, Dask, 
and Dask-cuDF, mirroring the insights drawn from 
scholarly discussions on scalable dataframes and the 
increasing necessity for distributed in-memory 
dataframes as discussed by DeLisi et al. [1] and Chen 
et al. [4]. 

Polars displayed notable performance, particularly 
in terms of execution time, but its memory usage was 
higher compared to cuDF and NumPy. At larger 
scales, cuDF maintained its efficiency, but NumPy 
showed limitations in handling larger datasets [5]. 
Dask-cuDF, though slower for smaller datasets, 
proved to be more effective for large-scale processing, 
suggesting its suitability for distributed computing 
scenarios. Our analysis of machine learning 
frameworks in a GPU-accelerated environment 
included ONNX with XGBoost and LightGBM, and 
the FIL with these models. ONNX showed higher 
execution times and memory usage, indicating a  
trade-off for its deployment flexibility. GPU versions 
of LightGBM and XGBoost outperformed their CPU 
counterparts, with XGBoost on GPU being particularly 
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efficient. FIL, especially with XGBoost, stood out for 
its low execution times and minimal memory usage, 
highlighting its optimization for GPU-accelerated 
environments. 

For optimal data processing performance, cuDF is 
recommended for both small and large datasets due to 
its efficient balance of execution time and memory 
usage [4]. Dask-cuDF is suitable for distributed 
computing scenarios, especially with large datasets 
exceeding 30 million data points. In GPU-accelerated 
environments, FIL with XGBoost is recommended for 
tasks requiring rapid execution and minimal memory 
usage. ONNX offers deployment flexibility across 
platforms, although it exhibits higher execution times 
and memory usage. Prefer GPU versions of 
LightGBMand XGBoost for enhanced performance, 
with XGBoost on GPU being particularly efficient. 

 
 

4. Conclusions 
 

The conclusions drawn from our comprehensive 
analysis serve to highlight the pivotal role that the right 
choice of data processing libraries and machine 
learning frameworks plays in the realm of  
GPU-accelerated computing environments. Through 
meticulous benchmarking, cuDF has emerged as a 
standout performer, adeptly managing both modest 
and voluminous datasets with remarkable efficiency. 
Its counterpart, Dask-cuDF, excels when tasked with 
the demands of sprawling, distributed datasets. This 
study further illuminates the limitations of Pandas and 
NumPy when faced with scaling challenges, a detail 
particularly relevant for tasks bound by dataset size. 
The Fast Inference Library (FIL), when employed with 
XGBoost, is distinguished by its optimal use of GPU 
resources, highlighting an enviable efficiency that is 
critical for performance-intensive applications. While 
ONNX offers deployment flexibility, it does so at the 
expense of efficiency, suggesting that its use case 

should be carefully considered in resource-sensitive 
environments. Significantly, our research corroborates 
the superior performance of GPU-based versions of 
LightGBM and XGBoost over their CPU-based 
alternatives, with XGBoost on GPU displaying 
particularly remarkable enhancements. This 
distinction is not only a testament to the advancements 
in GPU technology but also serves as a critical 
consideration for practitioners aiming to leverage the 
full power of modern computing architectures. In sum, 
the judicious selection of these tools, informed by our 
findings and grounded in the extensive body of 
literature, is essential for maximizing computational 
efficiency and achieving the desired outcomes in  
data-intensive tasks and real-time applications of these 
machine learning models. 
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Summary: The measurement of chronic wound size has clinical relevance for the evaluation of lesion evolution. Therefore, 
an objective, accurate and simple measurement is important for the optimal management of patients. Two methods based on 
Machine Learning (ML) algorithms have been developed to enable the automatic calculation of the area of skin lesions using 
a mobile device. One of the methods consists of using an external measurement reference based on an adhesive as a calibrator, 
and the other one uses a reference given by a capture of the three-dimensional space. This procedure is intended to be an 
objective, accurate and simple solution to this clinical need in the field of skin lesion management. This article describes the 
validation process of the new methods for measuring chronic wound area using imaging and ML algorithms. A clinical trial 
has been carried out in a hospital center in a controlled and non-randomized manner. The results demonstrate the efficacy of 
our method compared to traditional methods. 
 
Keywords: Chronic wound, Machine learning, Area measurement, Images, Intraclass correlation index. 
 
 
1. Introduction 
 
1.1. Background 
 

A wound appears when the skin tissue breaks 
down. This begins a process of regeneration of the 
damaged skin known as cicatrization, which can 
extend from hours to years, or may not occur at all. A 
wound is classified as a chronic wound when this 
repair time is very long or does not follow an orderly 
evolution. In contrast, acute wounds heal gradually, in 
a manner appropriate to the size and type of wound, 
usually within a short period of time [1]. The most 
frequently treated lesions are vascular ulcers (venous 
and arterial), diabetic foot ulcers and pressure  
ulcers [2]. 

In Europe, an estimated 1.5 to 2 million people 
suffer from acute or chronic wounds [3]. These types 
of skin injuries are treated in hospitals or in community 
settings, such as primary health centers or in private 
homes with the visit of a nurse. Wounds pose an urgent 
clinical challenge due to the great impact they have on 
both the patient and the healthcare system. On the one 
hand, patients’ quality of life is markedly affected as a 
consequence of the physical, cognitive and social 
effects of skin injuries and their treatment [3]. On the 
other hand, skin injuries have a large impact on 
healthcare costs due to their high prevalence, 
recurrence and diversity [4], the time spent by nurses 
and other healthcare professionals, and the healthcare 
costs resulting from frequent dressing changes and 
potential wound complications [3]. In addition, 
wounds, influenced by factors such as population 
aging, diabetes, obesity, or bacterial resistance to 
antibiotics (persistence of infections), are expected to 

remain a major clinical, social, and economic concern 
in the coming years [5]. 

 
 

1.2. State of the Art 
 

The measurement of the wound size is part of the 
phases of the management of subjects with skin 
lesions, from the initial assessment and classification 
of the wound as well as the selection of therapeutic 
strategy, to the evaluation of the evolution of the 
wound [6]. According to [7, 8], skin injury 
measurement has clinical relevance to know the 
healing status. Furthermore, measuring the surface 
area of a skin lesion is part of the recommendations of 
national and international clinical guidelines for 
wound care and management [9, 10]. The framework 
for wound assessment in clinical practise is the  
so-called “Wound Assessment Triangle” 
recommended by the World Union of Wound Healing 
Societies [11]. The Assessment Triangle is based on 
three aspects: the wound bed, the wound edge, and the 
perilesional skin; where the wound bed comprises, 
among other clinical signs, the measurement of wound 
size. Then, wound size is part of the parameters that 
should be recorded during wound assessment, whether 
using the “Wound Assessment Triangle” framework or 
other validated wound evolution assessment scales, 
such as the PUSH 3.0 (Pressure Ulcer Scale for 
Healing) or the RESVECH 2.0 (Expected Results of 
the Assessment and Evolution of Chronic Wound 
Healing Index) [12]. Therefore, an objective, accurate 
and simple measurement of wounds is important for 
the optimal management of subjects with this type  
of pathology. 
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Then, the measurement of chronic wound size has 
clinical relevance for the evaluation of lesion 
evolution. Therefore, an objective, accurate and simple 
measurement is important for the optimal management 
of patients. Today, the vast majority of skin lesion 
measurement methods in use have limitations; ruler 
measurement overestimates the area with a lack of 
precision in the measurement of non-rectangular or 
irregular lesions, planimetry with transparent acetate is 
an invasive technique and adobe photoshop planimetry 
is sensitive to illumination and size of the skin lesion. 
However, new methods using portable systems such as 
mobile phones and 3D technology can be used to make 
such measurements. This demonstrates how modern 
medical imaging combined with advanced 
telecommunications can provide better health care and 
diagnosis, improve patient handling, reduce health 
service costs, and save lives effectively everywhere in 
the world [13]. 
 
 
2. Objectives 
 

The main objective is to compare the concordance, 
repeatability and reproducibility of the results of the 
calculation of the area of skin lesions between three 
measurements methods: rule measurement, digital 
planimetry and the developed algorithms. The 
secondary objective is to evaluate the usability for the 
calculation of the area using a mobile device with the 
software-implemented algorithms. 

In order to accomplish this, two methods based on 
Machine Learning (ML) algorithms have been 
developed to enable the automatic calculation of the 
area of skin lesions using a mobile device. One of the 
methods consists of using an external measurement 
reference based on an adhesive as a calibrator, and the 
other one uses a reference given by a capture of the 
three-dimensional space. This procedure is intended to 
be an objective, accurate and simple solution to this 
clinical need in the field of skin lesion management. 
 
 
3. Methods 
 
3.1. Design, Settings and Participants 
 

A prospective, single-center, non-randomized,  
pre-marketing clinical investigation has been 
conducted with one arm of subjects to collect skin 
lesion area for comparison of the results obtained 
between three methods of measurement. There has 
been no follow-up of patients within the clinical 
investigation. After informed consent, total of  
67 wound images were obtained from 41 patients  
(>= 18 years) between November 22, 2022 and 
February 10, 2023. For inclusion in the study, skin 
lesions must not be neoplastic, tumorous or 
precancerous, nor present cutaneous carcinoma or 
other skin lesions of confirmed malignancy or with 
excessive exudate that may hide part of the wound and 
its contour. Also, the calibrator was required to be 

visible in picture and the wound must be measured 
with a 15 cm ruler. 

 
 

3.2. Sample Collection 
 

The study requires a single visit to the center by the 
subject. The visit consisted of preparing the subject by 
placing him/her in a suitable and comfortable position, 
covering the sensitive areas with a cloth and cleaning 
the skin lesion with physiological saline solution. The 
room was conditioned with adequate lighting. Since 
the position of the light is a key factor in the quality of 
the image, in order to eliminate shadows on the area to 
be photographed, the image was not taken under a 
direct light source. The flash has been avoided and a 
frontal focus of the light has been achieved. 

Once the patient has given informed consent, the 
measurements of the wound area were performed by 
different trained nurses using the application installed 
on two different iPhone device models and on an iPad, 
resulting in three images (photo A, photo B and photo 
C) to check, apart from the agreement of the area 
measurement result with the software, the 
reproducibility and repeatability. First, the area was 
measured using a ruler and the Kundin method [14]. 
Following, the researchers placed an external 
calibrator in the same plane as the skin lesion on intact 
skin at a minimum distance of 2 cm from the patient's 
skin lesion and, prior to taking the photograph, the 
researcher selected two reference points on the screen 
of the mobile device so that both the 2D and 3D 
versions of software would have a reference for 
calculation. Then, three images of the same wound 
were taken with each device using the application 
which automatically calculated the area (Fig. 1). 
 

 
 

Fig. 1. Area measurement with application. 
 
 
3.3. Main Outcomes and Measures 

 
The evaluation criteria are the comparison of the 

concordance of skin lesion area calculation results 
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between the three measurement methods: ruler 
measurement, digital planimetry and the developed 
algorithm. At the same time, evaluate the software 
reproducibility with the calculation of skin lesion area 
between two different mobile devices. Also, evaluate 
the software repeatability with the calculation of skin 
lesion area between two consecutive measurements 
performed with the same device and by the same 
investigator. 

Finally, assess the software usability by means of 
the completion of a usability questionnaire by the 
researcher, as well as the recording of the time required 
to complete the calculation of the skin lesion with each 
method used. 

 
 

4. Results 
 

The agreement between the two modes of operation 
of ML algorithm and digital planimetry is high with 
ICC values of 0.989 for 3D method and 0.993 for 2D 
method. In addition, the agreement between ML 
algorithm 2D and 3D calibration methods is associated 
with an ICC of 0.996, representing a high consistency 
between both modes of operation. The algorithms also 
have a high repeatability reflected in the ICC obtained, 
with 0.946 for 3D mode, and 0.971 for 2D mode. In 
addition, the reproducibility between different mobile 
devices is also high, with an ICC of 0.978 for both 3D 
and 2D methods. The usability is also highly elevated. 
According to the questionnaires conducted by the 
research team at the end of the study, the researchers 
would use the implemented software on a regular basis 
in clinical practice and consider it to be a fast, 
convenient, and simple method with greater ease of 
access to information than alternative methods 
currently available. In addition, it is significantly faster 
than digital planimetry (1.37 minutes versus  
1.83 minutes; P = 0.0033). With respect to safety, no 
adverse events were reported during the study and no 
unanticipated risks were detected. 

 
 

5. Conclusions 
 

The conducted pre-market clinical investigation 
has demonstrated that the software-implemented 
algorithms are safe for both the intended user and the 
intended target population, and it meets the 

manufacturer's intended use: automated calculation of 
skin lesion area using a mobile device. The study has 
validated the performance, safety, and usability of the 
implemented method as a valuable tool in the 
measurement of skin lesions. 
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Summary: Reliability assurance of vehicle software components faces new challenges in the era of Machine Learning (ML). 
The different development paradigms and the black-box nature of ML based models result in several unexpected 
insufficiencies during vehicle operation. In this paper, we propose a reliability assurance framework to mitigate these 
insufficiencies within a vehicle powertrain function. The framework is intended to maintain a consistent model performance 
by identifying inaccurate predictions at runtime. Furthermore, it aims to enhance the model performance iteratively by 
leveraging unreliable predictions for model retraining. We also provide a summary of the research methodology that is 
followed to develop and evaluate the framework. In the main section, we present state-of-the-art methods, which possess the 
potential to be further considered. Finally, we discuss the limitations of these approaches and the main research gaps. In 
conclusion, we observe a strong focus on automated driving while ignoring other important vehicle components that also 
include ML based modules. Furthermore, a lack of awareness is identified regarding the applicability of these approaches in 
real-time applications. 
 
Keywords: Reliability assurance, Machine learning, Deep learning, Powertrain software, Runtime monitoring. 
 
 
1. Introduction 

 
Machine Learning is increasingly becoming a key 

instrument in developing automotive software. 
However, deploying ML-based software components 
is still restricted to a few applications due to safety and 
reliability concerns [1]. For many years, the software 
development process has followed the V-Model and 
standards such as ISO 26262 [2]. Given that ML 
models acquire the desired system behaviour from 
complex and high-dimensional data, standard 
verification and monitoring procedures do not apply to 
ML-based software [3]. Standard performance metrics 
in ML allow only an aggregated evaluation of the 
model performance, leaving large errors on individual 
predictions undetected [5]. Additionally, these 
measures are only possible in the presence of ground 
truth labels. Since these labels are often unavailable 
during operation, appropriate monitoring methods 
must be developed to assess the reliability of individual 
model predictions at runtime. 

Recently, considerable research work has been 
achieved to address the safety challenges of ML-based 
software. Many aspects should be considered when 
developing ML models for safety-related applications. 
Fig. 1 provides a high-level illustration of the 
mainstream challenges in ML-safety. For instance, 
numerous studies have been conducted to create novel 
approaches for testing and validating ML models. 
Explainable Artificial Intelligence (XAI) is a 
significant area of research where scientists are 
working to create explanation approaches for how 
learning systems make decisions. Furthermore, new 
initiatives are under development, such as ISO PAS 

8800, focusing on safe AI for road vehicles [32]. It 
aims to provide specific guidelines and 
recommendations for handling certification-related 
concerns with AI-based systems. Safety, robustness, 
transparency, and reliability are among the primary 
concerns. To meet the requirements outlined in similar 
standards, technical solutions must be developed. 

 
 

Fig. 1. Research outline. 

 
 
 
The research accomplished in the automotive 

sector so far has primarily focused on the safety of 
automated driving functions, e.g., [31]. Developing 
safe and reliable ML-applications within other vehicle 
software components such as powertrain still needs to 
be addressed [1]. Powertrain software functions are 
based on time series sensor signals. Unlike data in the 
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image domain, time series data exhibit temporal 
dependencies that introduce additional challenges to 
the modeling and validation process. Since prior 
approaches from the image domain are inappropriate, 
new reliability assurance methods must be  
developed [6]. 

This paper represents an initial comprehensive 
study in the automobile industry that exclusively 
focuses on powertrain-related ML reliability. The aim 
of this study is twofold: (1) to contribute to knowledge 
by identifying significant research gaps; (2) to explain 
why ML in powertrain software requires a distinct 
approach. 
 
 
2. Research Outline 
 
2.1. Research Objectives 
 

Reliability in ML has emerged alongside other 
safety related aspects as a crucial concern, particularly 
in safety-relevant applications. Thus, we aim in this 
work to address the reliability assurance of ML from 
an industrial standpoint. Reliability refers to the 
consistency of model performance under different 
circumstances [8]. [9] proposed to classify reliability 
assurance measures in ML into: (1) failure prevention; 
(2) failure identification; and (3) maintenance. 

Failure prevention can be addressed before and 
during model development, for example, by a good 
model design, a suitable algorithm, and adequate data 
collection. In contrast, failure identification requires 
runtime monitoring procedures, which assess the 
reliability of individual predictions (pointwise). The 
last measure in the reliability assurance principles 
proposed by [9] is the model update, which is referred 
to as maintenance. In this work, we aim to address the 
reliability of an already-trained ML model. This step is 
crucial to ensure the applicability of our approach on 
other existing use cases in the powertrain domain 
without any restrictions or assumptions about the 
model development process. Therefore, our research 
focuses on developing measures that align with the 
failure identification and maintenance principles and 
take into account the specific requirements within 
powertrain domain. Our research aims to answer the 
following research questions: 

- Research Question 1: What approaches allow for 
the identification of unreliable individual model 
predictions at runtime? 

- Research Question 2: Can the model performance 
be enhanced through an additional collection of 
instances with unreliable predictions? 

Motivated by these research questions and the 
reliability assurance principles, we propose in Fig. 4 a 
general and scalable framework designed as an online 
monitoring system for ML-based driving functions 
within a vehicle control unit. The framework consists 
of a reliability estimation module, which processes the 
input signals of the model and computes a reliability 
score at inference time. Consequently, it identifies 
unreliable model predictions during operation and 

prevents their transmission to the target system 
promptly. As a result, this approach guarantees that the 
model operates within a restricted domain. Input 
signals that lead to a low reliability score are stored for 
further analysis and model retraining. The framework 
can also serve as a tool for targeted data acquisition 
during test drives to iteratively improve the model 
performance throughout the development process. 
 
 
2.2. Methodology 
 

We follow the research process in Fig. 2 to develop 
and evaluate the reliability assurance framework. 
 
 

 
 

Fig. 2. Research methodology. 
 
 
Concept derivation 

The initial phase involves a comprehensive study 
of existing state-of-the-art methods. The goal is to 
assess current knowledge and practices related to ML 
reliability assessment, which align with our predefined 
criteria in Section 3.2. Based on our evaluation criteria, 
a specific method for reliability estimation is selected 
and adapted to fulfill the intended task in our 
framework. The next step involves setting up the 
software-in-the-loop environment and implementing 
the framework. 

 
Concept evaluation 

The reliability assurance framework is evaluated in 
a software-in-the-loop environment based on a  
real-world powertrain use case. The use case includes 
an LSTM, which processes multivariate time series for 
an early detection of a safety-related event in a vehicle. 
The LSTM model performs a binary classification task 
and predicts whether the event will occur or not. The 
evaluation of our approach involves running several 
simulations where the ML model operates within the 
designed framework. Our evaluation criteria are based 
on the error rate of the supervised ML model. For 
binary classification problems, a confusion matrix 
provides a good understanding of the model 
performance. As mentioned, reliability refers to 
maintaining the model performance under various 
conditions. The estimate of the true model 
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performance is always based on statistical assumptions 
about the data distributions during training and testing. 
Though, these assumptions usually don’t apply to real 
world applications due to the infinite set of possible 
inputs [10]. Taking these facts into account, we define 
the acceptance criterion for our approach as the ability 
of the framework to maintain a similar model 
performance, which was evaluated during testing. 

The second part of our framework involves a model 
retraining with new samples that are detected as 
unreliable. For this purpose, a triggering condition for 
the model retraining should be determined in advance. 
Furthermore, determining which unreliable predictions 
are informative and consequently enable to enhance 
the model performance is still an open question. 
 
 
3. Related Work 
 
This section provides an overview of state-of-the-art 
approaches for reliability estimation in ML. The 
structure of the review is illustrated in Fig. 3. Initially 
we clarify specific ambiguous terms, which often 
possess broad definitions in the literature. Then, we 
dive into the approaches for failure identification and 
pointwise monitoring in ML. On the application level, 
we narrow our research to cover methodologies 
relevant to the automotive sector and time series 
domain. Finally, we end up evaluating the state-of-the-
art and selecting relevant approaches that are aligned 
with our predefined criteria. 
 
 

 
 

Fig. 3. Structure of the literature review. 
 
 

3.1. Definitions 
 

Reliability: refers to the ability of a model to 
perform as intended within specified performance 
limits and under various conditions [8, 9]. 

Maintenance: “The ease with which a software 
system or component can be modified to correct faults, 
improve performance or adapt to changed 
environments” [11]. 

Out-of-distribution (OOD): refers to test samples 
drawn from a distribution that is different from the 
training distribution. There is no general definition of 
the term distribution in the literature since it depends 
on the target application [12]. For example, in image 
classification problems, the distribution refers to the 

label distribution [12]. This paper defines a 
distribution as the spatial arrangement of the input data 
within the feature space. We also define an OOD 
sample as a test sample with an input far from this 
distribution. 

Anomaly detection (AD): in contrast to OOD 
which is always associated with data unknown for the 
ML model, AD is a more general term and can be used 
for novelty / outlier detection in data, which are not 
explicitly used in ML context (e.g., fault diagnosis, 
cybersecurity). 
 
 
3.2. Reliability Estimation Approaches 
 

To develop the reliability assurance framework a 
targeted literature review has been carried out. This 
section provides a summarized overview of the 
relevant state-of-the-art approaches for detecting 
unreliable predictions in ML models. The selection 
process of the literature is based on the following 
criteria. 

Inclusion Criteria: 
- IN1: The paper addresses the main challenges 

related to the safety, reliability or trustworthiness 
in Machine and Deep Learning AND; 

- IN2: The paper proposes a framework or an 
algorithm to assess the reliability of individual 
model predictions at runtime, AND; 

- IN3: The paper evaluates the approach on a real-
world application and discusses possible 
limitations. 

Exclusion criteria: 
- EX1: Approaches with specific assumptions 

about model structure, learning algorithm or  
data type. 

Evaluation Criteria: 
- EV1: Performance; 
- EV2: Computational efficiency. 
Reliability Assessment methods in the literature 

can be classified into: 
- Uncertainty quantification (UQ); 
- Out-of-distribution (OOD) detection. 
Although UQ techniques may be used to detect 

OOD samples, we don’t classify UQ as an explicit 
method for OOD detection for two reasons. First, these 
techniques aim to quantify the model uncertainty in the 
hole feature space, including in-domain space. 
Secondly, several investigations in [13-15] 
demonstrated empirically, that UQ often fails to detect 
OOD samples. 

Uncertainty quantification in neural networks 
Neural network outputs suffer from calibration 

issues that lead to overconfident predictions. To 
overcome this problem, multiple uncertainty 
quantification techniques have been addressed in the 
literature. These methods enable estimating the 
confidence of the neural network by computing a 
distribution over possible predictions instead of a 
single deterministic value [16]. Reliable uncertainty 
estimates and appropriate thresholds quantify when we 
can trust the model’s predictions [17]. This paper 
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focuses on approaches that align with our predefined 
criteria and hold potential for an integration into our 
framework. For a detailed review of UQ approaches 
we refer to [16, 18]. 

Based on the source of uncertainty, a distinction is 
made between aleatoric and epistemic uncertainty 
[18]. Aleatoric uncertainty is irreducible since it is 
inherent to the underlying data properties (e.g., noise) 
[18, 19]. In contrast, epistemic uncertainty refers to the 
uncertainty in the model predictions, generally caused 
by a lack of knowledge. Therefore, reducing epistemic 
uncertainty can be achieved through increasing the 
amount of data [16]. 

Bayesian neural networks are among the most 
widely used techniques for estimating uncertainty. 
These networks are based on probabilistic models and 
are an extension of conventional networks. Due to their 
statistical nature, this type of networks is not based on 
deterministic parameters. Instead, a probability 
distribution over possible network parameters is 
acquired in the learning process to generate variance in 
the model predictions [16]. Monte Carlo dropout 
represents an approximation of the Bayesian methods 
that quantifies uncertainty without a parametric model. 
To generate a distribution, both approaches require 
multiple forward passes during runtime [7]. [17] 
introduced ensemble methods, which leverage 
multiple deterministic networks at inference by 
averaging the predictions to generate a probability 
distribution. The model uncertainty is then estimated 
based on the variance of the predictions [13, 17]. 
Single deterministic methods include, for example, 
temperature scaling or training an additional network 
for uncertainty estimation purpose. Test-time data 
augmentation is another method for estimation 
uncertainty, which is based on generating slightly 
different data for every single input data during  
run-time. Then, multiple inferences are executed using 
the original and the augmented data to compute a 
distribution over predictions. 

Out-of-distribution detection 
Since defining an in-domain boundary for a dataset 

in a high dimensional space is not straightforward, 
OOD-detection is still an open research problem [20]. 
One of the most straightforward metrics for OOD 
detection in ML is the Euclidean distance in the input 
space. The distance provides information about the 
dissimilarity between new test samples and the training 
samples. [4] implemented the Euclidean distance to 
determine, if the test sample is close to the training set. 
Additionally, the local model performance on these 
nearby data is leveraged as a reliability measure of the 
prediction. These criteria align with the density and 
local fit principles introduced in [21]. Other works 
tried to enhance the effectiveness of the distance 
metric, for example, through a feature decorrelation 
[22] or feature weighting by their respective 
importance in the model [23]. [24] introduced a trust 
score, which is based on the agreement between the 
original classifier and an additional nearest neighbour 
classifier. Since the Euclidean distance measure in the 
feature space does not consider internal representations 

of a deep neural network, [25] introduced the distance 
in the latent space as a novelty measure. 

Another approach for OOD detection is training a 
classifier to learn the normal data distribution and 
using it to detect abnormal data. Training the classifier 
can be achieved for example by means of OCSVM, 
introduced by [26]. OCSVM is an unsupervised 
learning technique which applies the kernel trick and 
learns a decision boundary of a data distribution by 
estimating its density. During inference, new data 
points are classified into in-distribution or  
out-of-distribution. Another approach, introduced by 
[27], maps the input space into a hypersphere. The 
detection of abnormal behaviour is based on whether 
the new sample lies inside or outside the  
hypersphere [27]. 

OOD detection in time series 
In contrast to image classification, where OOD 

detection methods have been excessively studied in the 
literature, time series data still need to be addressed. 
[6] proposed an algorithm for OOD detection based on 
deep generative models. [28] implemented statistical 
distance measures to detect unreliable predictions 
within a univariate time series forecasting model. 
Since only a few studies exist in the field of OOD 
detection in time series, we enlarged our scope of 
research to cover other domains such as natural 
language processing (NLP) and human activity 
recognition (HAR), which are also based on sequential 
data. The mainstream approach in this field is to use 
autoencoder or generative models (GAN) to 
distinguish normal from abnormal data [29]. This 
approach assumes, that an autoencoder can accurately 
reconstruct in-distribution samples. In contrast, 
abnormal samples are associated with a higher 
reconstruction cost [12]. OOD samples can be detected 
by comparing the reconstruction error to a  
predefined threshold. 

Online monitoring in automotive applications 
In recent years a few studies have been carried out to 
investigate monitoring approaches within automotive 
applications. [7] combined multiple monitoring 
approaches in a meta model to detect unreliable 
predictions in a traffic sign recognition model. The 
monitoring approaches were applied for different 
triggering conditions (e.g., OOD, adversarial samples). 
[30] implemented an online OOD detection method 
within a perception function for automated driving. 
The approach is based on reconstructing the image by 
using an autoencoder. The reconstruction error serves 
as a metric to detect OOD samples. [1] implemented 
OCSVM to detect OOD data in a time series regression 
model. Therefore, feature engineering on the time 
series was required to achieve a time independent 
representation of the data into a feature space. 
 
 
3.3. Evaluation 
 

In [16] an evaluation of several uncertainty 
estimation approaches based on different criteria, 
including computational effort during training and 
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inference was carried out. The research demonstrates 
that Bayesian methods and ensembles require the 
highest computational effort during training and 
inference. Additionally, ensemble methods require a 
high memory consumption during inference since 
several networks must be implemented in the target 
system. We notice that applying these techniques to 
sequence models (e.g., LSTM) can lead to a higher 
computational overhead because the entire sequence of 
data is needed for inference [19]. Since these UQ 
techniques align with our exclusion criterion EX1, they 
are excluded from further consideration. An exception 
is injection dropout, which does not require model 
retraining. Single deterministic techniques provide the 
lowest computational effort and memory consumption 
during training and inference, which makes them 
suitable for our framework. Similar to dropout and 
ensemble, test time data augmentation requires 
multiple forward passes for uncertainty quantification. 

However, there are no recommendations for a 
minimum required number of inferences to generate 
reliable uncertainty estimates. Therefore, we include it 
in our further consideration. 

Distance metrics application on time series requires 
special tools, such as feature engineering or dynamic 
time warping. Furthermore, the training data must be 
stored in the vehicle during operation to compute the 
distances. The same problem applies to autoencoder 
and generative models, which require many 
parameters to be stored in the vehicle leading to a high 
memory consumption. We also mention that there is 
considerable disagreement in the literature about the 
performance of the reliability estimation methods. 
Furthermore, there are no unified quality evaluation 
metrics or reliability thresholds, making an objective 
performance evaluation of the different approaches 
impossible. 

 
 

 
 

Fig. 4. Online Reliability Estimation Framework. 
 

 
4. Conclusion 
 

Our literature review shows a high awareness about 
the reliability challenges in ML, especially in  
safety-related applications or in healthcare. Our review 
reveals numerous publications in different domains 
dedicated to addressing ML insufficiencies. OOD 
detection and uncertainty estimation are the most 
common approaches for reliability estimation. 
However, the number of relevant studies drops 
significantly when taking into account the constraints 
inherent to powertrain software, such as computation 
time, complexity and data type compatibility. The 
literature in the automotive domain has tended to focus 
on perception functions for automated driving, leaving 
other ML applications in vehicle software uncovered. 
Consequently, there is a need for more knowledge 
about the effectiveness of the existing solutions for the 
powertrain domain. One of the biggest challenges is 
the fundamental contrast between the data types used 
in both domains. Time series data exhibit temporal 
dependencies that must be taken into account in the 
reliability assessment. These time dependencies differ 
completely from the spatial relationships of image 
pixels [6]. For example, in contrast to image data, it is 
more difficult to label OOD time series data manually. 

This leads to an additional complexity, if some OOD 
data are required for developing or evaluating the 
reliability estimation framework. Therefore, there is a 
need for new approaches, which consider these 
particularities. For example, distance metrics can be a 
suitable approach, if the data storage prerequisite and 
the temporal dependencies between different time 
steps are efficiently handled. 
We also mention that the literature only covers the 
failure identification principle, discussed in  
Section 2.1. There are no measures of how to cope with 
these unreliable predictions once detected. During 
vehicle operation, it may be insufficient to detect 
unreliable model predictions, especially when other 
software modules rely on these predictions. Therefore, 
we address in our work the maintainability of the 
model, by leveraging unreliable predictions to retrain 
the model. Consequently, the amount of unreliable 
model predictions can be iteratively reduced to an 
accepted level. Except in the active learning domain, 
there is no guarantee of a correlation between 
unreliable predictions and model improvement. The 
literature recommends increasing the amount of data to 
reduce epistemic uncertainty. However, distinguishing 
epistemic uncertainty from other types of 
insufficiencies is not straightforward. 
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Summary: Decoding EEG signals is crucial for unraveling human brain and advancing brain-computer interfaces. Traditional 
machine learning algorithms have been hindered by the high noise levels and inherent inter-person variations in EEG signals. 
Recent advances in deep neural networks (DNNs) have shown promise, owing to their advanced nonlinear modeling 
capabilities. However, DNN still faces challenge in decoding EEG samples of unseen individuals. To address this, this paper 
introduces a novel approach by incorporating the conditional identification information of each individual into the neural 
network, thereby enhancing model representation through the synergistic interaction of EEG and personal traits. We test our 
model on the WithMe dataset and demonstrated that the inclusion of these identifiers substantially boosts accuracy for both 
subjects in the training set and unseen subjects. This enhancement suggests promising potential for improving for EEG 
interpretability and understanding of relevant identification features. 
 
Keywords: EEG, Neural network, Classification, Human-computer interfaces. 
 
 
 
1. Introduction 
 

The interplay between humans and artificial 
intelligence (AI) remains suboptimal, lacking the 
depth of engagement and synchrony inherent to 
human-to-human interactions. In pursuit of bridging 
this gap, there has been a marked shift towards 
leveraging neurophysiological insights, particularly 
through the prism of electroencephalography (EEG), 
to elucidate underlying cerebral mechanisms and 
refine the human-computer interface. The WithMe [1] 
experiment exemplifies this approach by presenting 
subjects with specific auditory and visual stimuli, 
thereby enabling the differentiation between target and 
distractor stimuli, whilst concurrently capturing the 
resultant EEG data. However, another challenge that 
arises is decoding the collected EEG signals, and in 
particular how to effectively decode and analyze the 
data to extract meaningful information. 

Recently, advancements in machine learning have 
shown notable advantages in extracting intricate 
information from EEG signals [2, 3]. Among these 
techniques, Convolutional Neural Networks (CNNs) 
and Recurrent Neural Networks (RNNs) stand out. 
CNNs process EEG signals as frames, synthesizing 
this data to make final decisions. RNNs, in contrast, 
retain information from previous inputs, showcasing 
an ability to recognize and remember temporal 
sequences, which is crucial for tasks needing long 
short-term memory of past events. Initial explorations 
employing deep neural networks (DNN) and 
conventional machine learning paradigms have 
yielded promising outcomes by directly processing 
EEG signals from WithMe experiment to classify the 
target/distractor [4]. The majority of neural network 
solutions for EEG decoding utilize fully supervised 
learning methods, meaning they refine their 

parameters based on hard-labeled data. However, this 
method tends to create models that are highly 
specialized for the tasks they're trained on, which may 
not perform well on different tasks or with new 
individuals [5]. In addition, the heterogeneity in 
individual brain activity patterns poses a significant 
challenge to the current deep learning frameworks, 
particularly in decoding EEG signals from subjects not 
represented in the training corpus. 

Notwithstanding these challenges, the WithMe 
experiment has unveiled certain individual 
characteristics, notably sensory dominance [6], that 
substantially influence experimental outcomes. For 
instance, participants with auditory dominance 
exhibited superior performance across various metrics 
and conditions compared to their visually dominant 
peers [1]. This observation prompts a reevaluation of 
the role individual-specific traits play in modulating 
EEG signals in an attention and working memory task. 
It raises the intriguing possibility that integrating a 
compendium of these personal attributes into 
computational models could potentially enhance their 
representational capacity. By decoding the latent 
interplay between personal traits and EEG patterns, 
this research aspires to not only bolster decoding 
accuracy for familiar subjects but also extend 
predictive proficiency to novel individuals. 

To tackle this issue and recognize that personal 
characteristics can impact experiment results, we 
propose a novel framework that incorporates 
conditional identification information into the EEG 
decoding process. Thus, a network employing fully 
supervised learning can utilize not only the hard label 
information but also the conditional identification 
information. This paper is dedicated to investigating 
the viability of this innovative methodology, with the 
ultimate aim of advancing human-AI interactions. 
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2. Overview 
 
2.1. Overview of Framework 
 

Fig. 1 depicts the structure of our proposed 
framework, comprising two main components:  
(1) Embedding the conditional identification 
information, employing a 16-neuron embedding layer 

designed to transform conditional identification 
information. Alongside, the pre-convolution layer, 
functioning as an identity layer in this study, encodes 
EEG data. (2) Decoding the integrated features, where 
this section is capable of utilizing various renowned 
neural network models to distinguish effectively 
between target and distractor stimuli. 

 
 

 
 

Fig.1. Overview of the Proposed Framework. 
 
 
2.1. Conditional Identification Information 
 

The conditional identification information of each 
individual is utilized for target/distractor classification. 
This auxiliary conditioner employs an embedding 
layer to encode the identification attributes of each 
subject, transforming them into a comprehensive 
subject embedding. These embeddings, along with the 
EEG patterns, are then synergistically fused and 
introduced into the neural network. Through this 
extension, we expect to enhance the model’s capability 
to learn a more generalized representation across 
diverse individuals, more precisely accounting for the 
variability in their brain activity characteristics. In this 
paper, we choose four distinct variables to examine 
their influence on the outcomes: ‘Auditive/Visual 
Dominance’, ‘Sex’, ‘Music Education’, and ‘Active 
musician’. The former is assessed with the experiment 
proposed in [6], the others can be obtained via a simple 
questionnaire. 
 
 
3. Experiment and Results 
 
3.1. Dataset 
 

Our model was trained and evaluated using the 
dataset from the WithMe experiment [1]. This 
experiment presented target and distractor digits to the 
subject tasking them to remember and rename the 
targets. Four conditions were tested: simple sequence 
of visual stimuli, rhythmic presentation of targets, 
simple presentation supporting targets with a short 
beep, rhythmic presentation supported by beeps. The 
dataset encompasses data from a total of  
42 participants. For training and internal testing, we 
randomly selected 38 participants further referred to as 
Within-subjects. The remaining 4 participants' data 

were reserved to assess the generalizability of the 
models and are referred to as Unseen-subjects. 
Specifically, we partitioned the WithMe data into a 
training set and two testing sets: Within-subjects, 
which comprises 18,176 training instances and  
4580 testing instances, and Unseen-subjects, which 
includes 2400 testing instances. Preprocessing of the 
EEG data involved re-referencing each channel to the 
average activity of the mastoid electrodes. The data 
were then band-pass filtered between 1 and 30 Hz and 
subsequently downsampled to 64 Hz. Then, the data 
were segmented into 1.2 s epochs based on trigger 
events, with the final preprocessing step normalizing 
the EEG channel data to ensure zero mean and unit 
variance for each sample. 

The data and code can be accessed via 
https://github.com/sunpengfei1122/Withme-EEG-
dataset. 

 
 

3.2. Implementation Detail 
 

In our experiment, we use the Adam optimizer to 
optimize the weights with a constant learning rate of 
0.0001 and a minibatch size of 128. The EEGNet 
architecture features convolutional layers, starting 
with 16 kernels for initial temporal and spatial feature 
extraction from EEG signals. This is followed by 
depthwise and separable convolutions using 32 and  
64 kernels, respectively, for efficient feature learning. 
For the LSTM [7] and DMU [8] models, a single 
recurrent unit with 64 neurons is utilized. Specifically, 
for the DMU's delay gate, the total number of delays is 
set to 20, considering the short duration of each 
sample. These models are developed within the 
PyTorch framework, adhering to default training 
methodologies. All modules are trained and updated in 
an end-to-end manner. 
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3.3. Results 
 

Table 1 delineates the performance of three 
baseline models (EEGNet, LSTM, and DMU) and 
their counterparts incorporating our conditional 
identification (IDs) information branch of each 
participant. Remarkably, the EEGNet model, when 
enriched with conditional information, exhibits 
substantial enhancements in performance in both 
within-subject and unseen-subject. Furthermore, the 
addition of conditional IDs to LSTM and DMU models 
also yields marked improvements, particularly in the 
recognition of unseen subjects, indicating that the 
network has acquired more generalized representation 
of EEG. Additionally, t-distributed Stochastic 
Neighbor Embedding (t-SNE) [9] visualizations across 
all individuals of the conditional identification 
embedding layer in Fig. 2 reveal a tendency for unseen 
subjects (person 38 to 41) to gravitate towards familiar 
centroids. Intriguingly, while up to 14 cluster centers 
(according to experimental data statistics) are 
theoretically possible given the 4-dimensional input 
IDs, only 7 prominent clusters emerge, suggesting that 
not all features exert a significant influence on the 
model's performance. 

 
 

Table 1. The results of three models on WithMe dataset is 
presented and compared to the models with the global 

condition id information. 
 

Datasets Models Within 
Accuracy 

Unseen 
Accuracy 

WithMe 

EEGNet 81.67 %  76.42 %  
+ IDs 86.29 % 79.08 % 
LSTM 80.09 % 74.00 % 
+ IDs 81.18 % 76.00 % 
DMU  81.94 % 75.92 % 
+ IDs 82.21 % 77.21 % 

 
 

 
 

Fig. 2. Illustration of the intrinsic clustering pattern  
of identification information after embedding layer,  
as unveiled by t-SNE. The grey clustering pattern represents 
all the trained subjects, while the colorful pattern denotes  
the unseen subjects. 

 
3.4. Analysis 
 

To further validate our proposed framework, we 
focus on a key personal trait: Dominance. The WithMe 

study [1] demonstrated that participants with auditory 
dominance outperformed visually dominant 
individuals in all metrics and scenarios. As illustrated 
in Fig. 3, this distinction is shown as two distinct 
clusters based on dominance type. Subsequently, we 
evaluate EEGNet in two contexts: Auditory vs. Visual 
dominance for EEG classification. Fig. 4 reveals that, 
for the vanilla EEGNet, visually dominant individuals 
slightly outperform their auditory counterparts in 
within-subject tests but fare worse in unseen situations. 
However, when incorporating IDs information, the 
auditory group excels in both scenarios, consistent 
with our experimental findings. This observation may 
suggest that participants who performed better in the 
experiment tended to have clearer representations in 
their EEG signals that can be recognized by  
neural networks.  
 
 

 
 

Fig. 3. Illustration of the intrinsic clustering pattern  
of Audio/Visual (A/V) dominance. 

 

 
 

Fig. 4. Classification Performance on the WithMe Dataset 
based on Auditory/Visual dominance. 

 
 
4. Conclusions 
 

In this paper, we investigate the effectiveness of 
incorporating additional conditional identification 
information into neural network architectures for the 
classification of target versus distractor stimuli based 
on EEG. Through the deployment of an auxiliary 
global conditioner that utilizes an embedding layer to 
capture unique individual traits, our methodology not 
only enhances the model's precision in the same 
subjects but also amplifies its generalizability to 
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unseen subjects, adeptly navigating the variety of 
neural responses observed in diverse individuals. Our 
results suggest that incorporating a personalized and 
context-aware conditioner is a promising approach to 
enhance the performance and reliability of EEG 
classification in real-world scenarios. 
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Summary: Federated learning, as a mechanism that coordinates multiple participants to train models together without sharing 
local data, is naturally privacy-preserving for data. However, during the process of federated learning model training, there is 
still a risk that malicious attackers can leak the privacy of sensitive data by stealing intermediate parameters and inferring the 
original user data. To address the above problems, an Adaptive Differential Privacy Blockchain Federated Learning  
(ADP-BCFL) method is proposed to realize the compliant utilization of distributed data under the premise of ensuring privacy 
and security. Firstly, utilizing blockchain to achieve secure storage and efficient querying of user summary data. Secondly, an 
adaptive differential privacy mechanism is proposed and designed, which acts in the process of federal learning parameter 
passing, adaptively adjusts the threshold size of parameter tailoring according to the parameter characteristics, controls the 
content of the introduced noise, and ensures a good global model accuracy while effectively solving the problem of inference 
attack. Finally, comparison experiments are conducted on MNIST and Fashion MNIST datasets to verify the effectiveness of 
the proposed method ADP-BCFL. 
 
Keywords: Federated learning, Adaptive differential privacy, Privacy protection, Blockchain storage, Deep learning. 
 
 
1. Introduction 
 

In today's digital era, data has become the core 
support and basic elements for the breakthrough 
development of emerging technologies and sectors of 
the big data industry, such as artificial intelligence, 
cloud computing, mobile Internet, etc., which has 
greatly contributed to the rapid development of the 
digital economy. However, nowadays, the massive 
data distributed storage in the terminal equipment 
without sharing with the outside world led to the 
phenomenon of "data silos", data leakage and data theft 
and other data security incidents [1], as well as China's 
enactment of data security and privacy protection of 
the relevant legal documents, data security and privacy 
protection has gradually been the close attention of the 
state, enterprises, and individuals [2]. To a certain 
extent, this seriously restricts the centralized "sharing" 
of massive data, increases the difficulty of effective 
utilization of massive data, makes massive data unable 
to maximize the role of not being able to be effectively 
shared, and also restricts the breakthrough 
development of machine learning and other areas of 
deep learning. 

The research on the fusion of blockchain and 
federated learning for co-construction of models has 
attracted extensive attention from both academia and 
industry [3-5]. For example, Fang et al. [6] proposed 
an edge computing privacy protection method based 
on blockchain and federated learning, which can detect 
malicious devices along with a certain percentage of 
poisoning attacks, and greatly improves the security of 
the federated learning training process. During the 
process of federated learning model training, there is a 
risk of privacy leakage due to privacy attacks [7], and 

thus should be combined with appropriate privacy 
protection methods. Lu et al. [8] applied the local 
differential privacy technique to blockchain federated 
learning to solve the problem of data security privacy 
protection in industrial internet by adding noise to the 
original data. 

The above related researches have made important 
breakthroughs in data utilization and data privacy 
protection, but at the same time, there are still three 
urgent problems to be solved, which are (1) the 
problem of inefficient and unmanageable information 
retrieval from distributed data endpoints in federated 
learning, (2) the problems of inefficient training and 
high communication cost in the use of encryption 
methods, and (3) the problem of low training model 
accuracy due to the inclusion of inappropriate noise 
content in the use of perturbation methods. Through  
in-depth research on the above issues, the main 
contributions of this paper are as follows. 

(1) The decentralized storage of simple summary 
information such as personal information of each local 
user and data information of the dataset is achieved 
with the help of blockchain [9], which improves the 
retrieval efficiency of relevant information and 
shortens the training time of the model. 

(2) Propose a federated learning data sharing 
method based on adaptive differential privacy 
mechanism, i.e., Adaptive Differential Privacy 
Blockchain Federated Learning (ADP-BCFL), to solve 
the privacy leakage problem in the process of  
federated learning model training parameter transfer 
by utilizing differential privacy technique. 

(3) Propose and design an adaptive gradient 
trimming mechanism to adaptively adjust the size of 
the trimming threshold using the ADAM algorithm to 
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effectively control the content of additive noise, reduce 
the impact of noise on model accuracy, and ultimately 
achieve the purpose of minimizing the loss of  
model privacy. 

(4) Comparative experiments are conducted on 
MNIST and Fashion MNIST real datasets in terms of 
three aspects, namely, training accuracy, performance 
loss and time cost, respectively, to evaluate the 
effectiveness of the proposed method and its 
superiority over other algorithms. 

 
 
2. ADP-BCFL Method Design 
 

This paper proposes and designs a  
blockchain-oriented adaptive differential privacy 
mechanism-based privacy protection method for 
federated learning data (ADP-BCFL) in conjunction 
with the blockchain technology to realize the effective 
processing and compliant utilization of multi-party 
user data. The method adopts the core idea of 
combining "on-chain and off-chain" to construct, and 
its architecture is shown in Fig. 1, which mainly 
contains the following two methods, namely, (1) data 
storage and processing method, and (2) adaptive 
gradient trimming method. 
 
 

 
 

Fig. 1. Adaptive differential privacy based data sharing 
model for federated learning. 

 
 
2.1. Data Storage and Processing Method 
 

The data storage of ADP-BCFL method in this 
system mainly includes the following two parts, which 
are (1) The storage of simple data summary 
information on the blockchain, including local users' 
personal information, the type and size of dataset data, 
and other summary information, ensures the secure 
storage and efficient retrieval of uplinked data. And  
(2) Storage of user's local data, i.e., the original data 
used for model training is always stored locally in each 
user terminal, which is directly stored and managed by 

the data holders, providing a basic guarantee for the 
privacy and security of the data. 

The ADP-BCFL approach to data processing in this 
system consists of the following three main parts, 
which are (1) the client uses the local data for model 
training and adds adaptive differential privacy noise to 
the process parameters, (2) the client uploads the 
trained local model updates to the server for 
aggregation, and (3) the server downlinks the 
aggregated updated global model parameters  
to the client. 
 
 
2.2 Adaptive Gradient Trimming Method 
 

For the gradient cropping according to a fixed 
global threshold 𝐶𝐶 during the training process of the 
federated learning model, there may be a problem of 
adding excessive noise due to setting too large a 
threshold, or over-cropping the gradient due to setting 
too small a threshold. This paper combines the idea of 
adaptive moment estimation of ADAM stochastic 
optimization method, and proposes an adaptive 
differential privacy mechanism, which calculates the 
adaptive learning rate of different parameters through 
the estimation of first-order moments and  
second-order moments of the gradient. The ADAM 
optimizer assigns the weights with the corresponding 
learning rate according to their own characteristics, so 
as to enable each parameter to achieve faster and 
further movement to the maximum extent, and then the 
model achieves a faster convergence rate. The 
updating formula for the gradient is 
 

𝐸𝐸[g]𝑡𝑡  =  𝛽𝛽1 ∗ 𝐸𝐸[g]𝑡𝑡−1 + (1 − 𝛽𝛽1) ∗ g𝑡𝑡, 
𝐸𝐸[g2]𝑡𝑡  =  𝛽𝛽2 ∗ 𝐸𝐸[g2]𝑡𝑡−1 + (1 − 𝛽𝛽2) ∗ (g𝑡𝑡)2, (1) 

 
where 𝐸𝐸[g]𝑡𝑡 is the cumulative gradient, 𝐸𝐸[g2]𝑡𝑡 is the 
cumulative square of the gradient, 𝛽𝛽1 and 𝛽𝛽2 are the 
smoothing constants (i.e., decay rates) used to smooth 
𝐸𝐸[g]𝑡𝑡 and 𝐸𝐸[g2]𝑡𝑡, respectively, 𝐸𝐸∗[g]𝑡𝑡 is the  
bias-corrected cumulative gradient, 𝐸𝐸∗[g2]𝑡𝑡 is the 
cumulative square of the bias-corrected gradient, 𝜃𝜃𝑡𝑡 
stands for the model parameters at the 𝑡𝑡 round of 
training, 𝑙𝑙𝑙𝑙 denotes the learning rate, and 𝜀𝜀0 is the 
smoothing term used to prevent the divisor from going 
to 0, which is typically set to 10−8. The optimizer's 
optimization process is top-down and top-up gradient, 
and the historical gradient derived from the already 
trained can be used to estimate the value of the gradient 
in the current round. Therefore, 𝐸𝐸[g2]𝑡𝑡−1 in the 
ADAM optimization algorithm can be regarded as an 
updated benchmark for the current gradient. 

With the help of ADAM algorithm idea, according 
to the different situations of each round in the training 
process, the global gradient of the current round is 
predicted by combining the updating benchmark of the 
gradient, and the size of the threshold is flexibly 
adjusted, so as to determine the gradient trimming 
threshold 𝐶𝐶𝑡𝑡 of the current round. 𝜂𝜂 is the local 
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trimming factor, and the updating benchmark of the 
gradient 𝐸𝐸[g�2]𝑡𝑡−1 is calculated as 
 

𝐸𝐸[g�2]0  =  0�⃗ , 
𝐸𝐸[g�2]𝑡𝑡−1  =  𝛽𝛽2 ∗ 𝐸𝐸[g�2]𝑡𝑡−2 + �1 − 𝛽𝛽2� ∗ (g�𝑡𝑡−1)2 (2) 

 
Since initializing the square of the accumulated 

gradient 𝐸𝐸[g�2]0 to 0 will result in 𝐶𝐶1 = 𝜂𝜂 �𝐸𝐸[g�2]0
1−(𝛽𝛽2)0

= 0, 
it cannot be used for gradient trimming. Therefore, a 
priori threshold 𝐺𝐺: when the cumulative square of the 
gradient at the beginning of training is insufficient (i.e., 
𝐸𝐸[g�2]𝑡𝑡−1 < 𝐺𝐺), make the gradient trimming threshold 
take a fixed value 𝐺𝐺; when the square of the cumulative 
gradient satisfies 𝐸𝐸[g�2]𝑡𝑡−1 > 𝐺𝐺 as training continues, 
make the gradient trimming threshold take  

𝐶𝐶𝑡𝑡  =  𝜂𝜂 �𝐸𝐸[g�2]𝑡𝑡−1
1−(𝛽𝛽2)𝑡𝑡−1

. 
To summarize, the process of local cropping of 

gradient g𝑖𝑖,𝑡𝑡 and addition of noise by device 𝑖𝑖 (1 ≤ 𝑖𝑖 ≤
𝑀𝑀) in round 𝑡𝑡 of training can be represented as 
 

 

g𝑖𝑖,𝑡𝑡  =  g𝑖𝑖,𝑡𝑡

max (1,
∥g𝑖𝑖,𝑡𝑡∥2
𝐶𝐶𝑡𝑡

)
+ 𝑁𝑁(0,𝐶𝐶𝑡𝑡2𝜎𝜎2), 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶𝑡𝑡  =  �
𝐺𝐺,𝐸𝐸[g�2]𝑡𝑡−1 < 𝐺𝐺

𝜂𝜂 �𝐸𝐸[g�2]𝑡𝑡−1
1−(𝛽𝛽2)𝑡𝑡−1

,𝐸𝐸[g�2]𝑡𝑡−1 > 𝐺𝐺
  

(3) 

 
From the above equation, it can be seen that as the 

number of iterations increases, the threshold 𝐶𝐶𝑡𝑡 of local 
cropping will continue to decrease as �𝐸𝐸[g�2]𝑡𝑡−1 
decreases, which in turn will make the perturbation 
noise 𝜉𝜉~𝑁𝑁(0, (𝐶𝐶𝑡𝑡𝜎𝜎)2𝐼𝐼) added to the gradient smaller 
and smaller, in order to achieve the purpose of 
improving the effectiveness of the model on the basis 
of ensuring the efficiency of training. 
 

3. Experiment and Analysis 
 

In this section, comparative experiments are 
designed to verify the superiority of ADP-BCFL using 
ADAM optimization algorithm to implement adaptive 
differential privacy federation learning mechanism. 
Comparison experiments are conducted on real 
datasets MNIST and Fashion MNIST for three 
parameter variables: model global accuracy, model 
privacy loss, and algorithm running time. 
 
3.1. Global Accuracy Comparison 
 

This section explores how the three federated 
learning methods, FedAvg, LDP-FL, and ADP-BCFL, 
compare in terms of global accuracy on the MNIST 
dataset and the Fashion MNIST dataset. 

The curves obtained from the experiment, Fig. 2 
and Fig. 3, lead to the following conclusions. 

(1) With the same number of participants, the 
global accuracy of the FedAvg method is the highest 
on the two datasets, suggesting that the introduction of 
a noise mechanism can have an impact on the accuracy 
of the federated learning model. 

(2) With the same number of participants and 
privacy budget, the ADP-BCFL method proposed in 
this paper is trained on two kinds of datasets, and the 
global accuracy obtained is higher than that of  
LDP-FL method and FedAvg method. And there is no 
large difference in the final accuracy of the model 
compared to the FedAvg method, which indicates that 
the ADP-BCFL method has a better performance. 

(3) Fashion MNIST dataset has more complex 
image data compared to MNIST dataset, so all four 
schemes perform better on MNIST dataset than on 
Fashion MNIST dataset. 
 

 
 

Fig. 2. Global accuracy of the MNIST dataset (left to right FedAvg, LDP-FL, ADP-BCFL) 
 

 
 

Fig. 3. Global accuracy of the Fashion MNIST dataset (left to right FedAvg, LDP-FL, ADP-BCFL). 
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3.2. Privacy Loss Comparison 
 

This section explores the comparison of the 
performance loss of three optimization methods, 
ADAM, SGD, and ASGD, on the MNIST dataset and 
the Fashion MNIST dataset. 

The curves obtained from the experiments, Fig. 4 
and Fig. 5, show that the performance loss values of 

the ADAM optimization method utilized in this paper 
are smaller than those of the SGD optimization method 
and the ASGD optimization method for different 
iteration rounds on the two datasets, indicating that the 
ADP-BCFL optimization method outperforms the two 
compared optimization methods. 

 

 
 

Fig. 4. Loss of privacy in the MNIST dataset (from left to right ADAM, SGD, ASGD). 
 

 
 

Fig. 5. Loss of privacy in the Fashion MNIST dataset (from left to right ADAM, SGD, ASGD). 
 
 

3.3. Algorithm Runtime Comparison 
 

This section explores three federated learning 
methods, FedAvg, ADP-BCFL, and LDP-FL, in terms 
of runtime comparison on the MNIST dataset and 
Fashion MNIST dataset. 

The curves obtained from the experiments, Fig. 6, 
lead to the following conclusions. 

(1) With the increase of the number of participants, 
the running time of all three methods on the two 
datasets increases, indicating that the increase of the 
number of participants leads to an increase in the 
running time of the algorithms. 

(2) With the same number of participants, the 
FedAvg method has the shortest running time. Among 
the two federated learning privacy preserving schemes 
that introduce noise mechanisms, the running time of 
the ADP-BCFL method proposed in this paper is 
significantly lower than the running time of the  
LDP-FL method, indicating the effectiveness of the 
ADP-BCFL method. 

(3) The Fashion MNIST dataset has more complex 
image data compared to the MNIST dataset, so the 
running time of the three methods on the MNIST 
dataset is shorter than that on the Fashion  
MNIST dataset. 
 

 
 

Fig. 6. Variation in running time with the number of participants (left to right MNIST, Fashion MNIST). 
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4. Conclusions 
 

In this paper, a federated learning ADP-BCFL 
method based on adaptive differential privacy 
mechanism is proposed by combining blockchain 
technology, federated learning mechanism and data 
privacy protection methods. Experimentally verified, 
the method in this paper effectively solves the problem 
of inference attack in federated learning under the 
premise of guaranteeing model accuracy and privacy, 
and solves the problem of large loss of model privacy 
caused by the fixed gradient tailoring size that makes 
the addition of perturbation noise content 
inappropriate. Future work will focus on the fusion of 
federated learning with other advanced techniques and 
privacy-preserving methods in the construction of 
training models with higher security and accuracy. 
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Summary: Fingerprint localization technology based on Wi-Fi signals has received widespread attention due to its advantages 
of low cost and easy implementation. However, the privacy leakage problem during the localization process restricts its 
development. We analyze the privacy threats and propose a novel privacy preserving indoor fingerprint localization scheme. 
Firstly, in order to hide the user's real fingerprint, a single-point localization dummy fingerprint generation algorithm was 
designed, which protected the user's request privacy by adding k-1 dummy location fingerprints. Secondly, considering that 
an attacker may launch a speculative attack on location privacy by using the background knowledge such as the information 
submitted by the user in the last location request, a continuous request dummy fingerprint generation algorithm is designed. 
Finally, Paillier homomorphic encryption algorithm was used to protect the user's location privacy from untrusted servers and 
attackers. Experimental results show that the proposed scheme not only achieves reliable privacy protection but also has low 
computational overhead. 
 
Keywords: Indoor localization, Wi-Fi fingerprint, Privacy protection, Dummy location, Paillier homomorphic encryption. 
 
 
1. Introduction 
 

The popularity of smart phones and the rapid 
development of various mobile applications in indoor 
environments have promoted the increasing demand 
for indoor positioning [1-2]. Wi-Fi devices are widely 
deployed in indoor environments and basically do not 
require additional special equipment support. 
Therefore, fingerprint localization technology based 
on Wi-Fi signals has become one of the most 
commonly used methods in indoor positioning [3], 
which usually includes offline phase and online phase. 
In the offline phase, the localization provider (LP) 
constructs a Wi-Fi fingerprint database by measuring 
the Received Signal Strength (RSS) values of each  
Wi-Fi Access Point (AP) in the indoor space from a 
preset series of reference points. In the online phase, 
the mobile terminal collects the RSS values of each AP 
received at the current position and sends it to the LP 
to request the positioning service. However, the 
localization mode through communication and 
interactive computing produces a unique privacy 
leakage problem. During the localization process, the 
user's location request information may be stolen by 
untrusted indoor positioning system or other  
malicious attackers. 

At present, the privacy protection work in the 
indoor location scene mainly adopts the scheme based 
on cryptography, which uses encryption algorithms to 
process fingerprint data and complete the localization 
related algorithms in the ciphertext domain, but the 
calculation and communication overhead of the 
scheme is too large [4]. Literature [5] studies the use 
of differential privacy to inject noise into the user's 
fingerprint data to protect location privacy. Dummy 
location technology is an effective method to protect 

privacy information with the advantages of simple 
deployment and without affecting the quality of 
service [6]. However, the difficulty of this strategy is 
that the generated dummy location fingerprint cannot 
be distinguished from the real location fingerprint. 

In order to solve the problem of privacy leakage in 
the online phase of indoor localization, this paper 
designs an indoor localization scheme combining 
dummy location and homomorphic encryption 
technology with the help of a semi-trusted third-party 
server. The main contributions as follows: 

a. A single-point localization dummy fingerprint 
generation algorithm is designed, and the historical 
request frequency is used as side information to 
generate dummy measurement information that is 
more consistent with the true distribution, so as to 
solve the problem that the dummy location fingerprint 
is easy to be filtered by attackers. 

b. A continuous request dummy fingerprint 
generation algorithm is designed, which considers the 
correlation information of the locations in the 
continuous positioning requests to generate a 
fingerprint set that maximizes the transfer entropy, so 
as to solve the problem that attackers use continuous 
positioning requests to reduce the location anonymity. 

c. Paillier homomorphic encryption algorithm is 
introduced to realize the secure transmission of user 
positioning results, which protects the user's location 
privacy and database information from untrusted 
servers and attackers. 

d. The performance of the proposed scheme is fully 
verified on the simulation data set. The experimental 
results show that the proposed scheme achieves the 
protection of privacy information without affecting the 
positioning accuracy. 
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2. Localization Scheme Based on Dummy  
    Fingerprint and Homomorphic Encryption 
 

The proposed scheme consists of a mobile 
terminal, a semi-trusted third-party anonymous server 
and a location server. Mobile terminals include smart 
phones, tablets and other devices that can collect 
information from nearby APs. Users to be located 
collect Wi-Fi RSS sampled from different APs at their 
current location, generate and encrypt the indicator 
vector V using Paillier homomorphic encryption 
algorithm, and then send them to the anonymous server 
together. The anonymous server is composed of the 
dummy fingerprint generation algorithm, which is 
responsible for storing and processing the user's 

historical positioning requests, helping users quickly 
generate positioning query fingerprint sets and send 
them to the LP for positioning requests. LP uses the 
positioning algorithm to calculate the location 
information of each fingerprint to match the 
corresponding physical coordinates from the database. 
Then, based on the homomorphic characteristics of 
Paillier algorithm, the homomorphic dot product 
operation is performed on the encrypted indicator 
vector and the positioning result, and the encrypted 
positioning result corresponding to the user's real 
fingerprint is obtained by matrix multiplication 
selection and returned to the user. The overall 
workflow of the scheme is shown in Fig. 1. 

 
 

 
 

Fig. 1. Workflow of the proposed scheme. 
 

 
2.1. Localization Query Fingerprint Set Generation 
 

Considering the problem that attackers may use 
background knowledge to reduce fingerprint 
anonymity, a method based on entropy measurement 
was proposed to generate location query fingerprint 
set, which included two parts: a single location dummy 
fingerprint generation (SLFG) algorithm and a 
continuous request dummy fingerprint generation 
(CRFG) algorithm, aiming to avoid the attack of 
attackers to the greatest extent and protect the user's 
location privacy. 

SLFG algorithm defends against the single point 
localization attack. The main process is as follows:  
(1) The anonymous server uses the k-means algorithm 
to divide the historical localization request fingerprint 
and calculates the query probability of each cell block, 
(2) The cell blocks are sorted based on the query 
probability, and 2k cell blocks before and after the 
actual fingerprint are selected to form the candidate 
cell set, (3) The location dispersion and entropy are 
combined to optimize the selection problem of 
anonymous cell, and the cell block with the maximum 
objective function value is selected to be added to the 
anonymous cell set by k-1 rounds of cycle. The 
objective function is defined as: 

 
 {(−∑ 𝑞𝑞𝑑𝑑 log2 𝑞𝑞𝑑𝑑𝑉𝑉𝑑𝑑𝜖𝜖𝑆𝑆𝑘𝑘−1 − 𝑞𝑞𝑖𝑖 log2 𝑞𝑞𝑖𝑖)𝜔𝜔𝑖𝑖}, (1) 

 
where 𝜔𝜔𝑖𝑖 = λ∏ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑉𝑉𝑑𝑑 ,𝑉𝑉𝑖𝑖)𝑉𝑉𝑑𝑑𝜖𝜖𝑆𝑆𝑘𝑘−1 𝑑𝑑𝑑𝑑𝑑𝑑(𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑉𝑉𝑖𝑖)，  
(4) A fingerprint is randomly selected from each 
anonymous cell block and the user's real fingerprint 

together to form the final localization query  
fingerprint set. 

In the case of continuous user requests for 
positioning, CRFG algorithm considers the new side 
information of the user's continuous position change. 
Based on the dummy fingerprint set submitted by the 
user in the last positioning request, it calculates the 
possibility that the members of the fingerprint set are 
the user's real fingerprint, and introduces the concept 
of information entropy to select the fingerprint set that 
maximizes the entropy value. Transfer entropy is 
defined as follows. 

 

 (2) 

 
 
2.2. Matrix Multiplication Selection 
 

For the request fingerprint set with anonymity 
budget k, there are k query results A = {A1,𝐴𝐴2,...,𝐴𝐴𝑘𝑘}. 
According to reference [7], based on the homomorphic 
property of Paillier algorithm, the server performs the 
homomorphic dot product operation on the indicator 
vector [V] and the positioning result A, and the specific 
calculation process is as follows: 

 

A⊙[V] = (𝐴𝐴1 . . . 𝐴𝐴𝑘𝑘)⊙�
[V1]
. . .

[Vk]
� = 

= (A1 ⊗ [V1])⊕...⊕(A𝑑𝑑∗ ⊗ [V𝑑𝑑∗])⊕...⊕(Ak ⊗ [Vk])= 
= [A1V1]⊕...⊕[AkVk] = [A1V1+...+AkVk]= 

= [0+. ..+Ad∗+. . . +0]= [Areal] 

(3) 
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3. Experimental Analysis 
 

We conduct simulation experiments to evaluate the 
performance of the proposed scheme, simulating a 
simplified indoor environment based on the  
log-distance path loss model, with a region area of  
20 m×15 m, a total of 300 reference points with a 
distance of 1m and 12 access points are considered, 
and the target is set to move in random directions at a 
speed of 1 unit length per second. It is mainly evaluated 
from the aspects of computational cost and  
privacy protection. 

Degree of privacy protection: Fig. 2 compares the 
conventional DLS algorithm for generating dummy 
locations, our proposed CRFG algorithm and the 
random scheme for randomly selecting dummy 
fingerprints, and gives the optimal location entropy 
value as a benchmark. Fig. 3 compares the 
performance of our proposed CRFG algorithm and 
SLFG algorithm in terms of transfer entropy with the 
change of k value. 

 
 

 
 

Fig. 2. Location entropy of different k. 
 
 

 
 

Fig. 3. Transfer entropy of different k. 
 
 

The experimental results are analyzed as follows: 
a. Both our algorithm and DLS take into account 

information such as historical query probabilities when 
generating fingerprint sets, so they can almost achieve 
near-optimal performance; 

b. CRFG algorithm has a higher transition entropy 
than single point positioning, that is, it reduces the 
possibility of breaking k-anonymity, thus providing 
users with a higher level of location privacy; 

c. The entropy increases with the increase of the 
privacy parameter k, because the greater the k, the less 
the probability that the untrusted LSP will recognize 
the user's fingerprint. 

Computational time cost: Fig. 4 explores the 
impact of anonymity degree k on the actual running 
time of each stage, and Fig. 5 compares the time 
overhead of our work with that of PriWFL [8] scheme 
which uses fully homomorphic encryption to protect 
user location privacy. 
 
 

 
 

Fig. 4. The running time of each stage of the scheme. 
 
 

 
 

Fig. 5. Effect of the number of APs on the running time. 
 

 
The experimental results are analyzed as follows: 
a. The user's time overhead mainly comes from the 

encryption of the selection vector and the decryption 
of the positioning result; 

b. Our work takes less time than the PriWFL 
scheme, because the PriWFL scheme needs to 
calculate the distance with all the fingerprints in the 
ciphertext domain, which incurs a large overhead; 

c. The run time increases with the number of aps 
because more aps led to more RSS data, which greatly 
increases the computational cost. 
 
 
4. Conclusions 
 

Based on virtual location and homomorphic 
encryption technology, the privacy protection indoor 
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positioning scheme realized by third-party server 
structure solves the privacy leakage problem in Wi-Fi 
indoor positioning service. In addition, our work does 
not interfere with the Wi-Fi signal measured by the 
user, so it has no impact on the localization error of the 
Wi-Fi fingerprinting localization algorithm. Finally, 
the simulation results show that the proposed scheme 
has high reliability, which not only improves the 
privacy security, but also meets the real-time 
requirements of positioning with low computational 
overhead. 
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Summary: Electronic component classification is frequently a straightforward assignment that involves classifying a single 
object against a plain background. This is due to the fact that many applications make use of a technological procedure that 
has fixed camera positions, consistent illumination, and a predetermined set of components that are classed. To date, no 
significant effort has been made to create a technique for object classification in industrial applications under the 
aforementioned circumstances. For this reason, the classification of a certain technical process is the main emphasis of this 
work. Using a stationary camera, the technique sorts electronic components on an assembly line. The study examined each of 
the key processes needed to construct a classification system, including the generation of databases, neural networks, and 
images. Using the suggested image acquisition technique, an image dataset was created in the first phase of the experiment, 
after which pre-trained networks were designed and evaluated. According to the findings, the pre-trained network (ResNet50) 
gets the maximum accuracy of 97.5 %. 
 
Keywords: Artificial intelligence, Data-augmentation, Electronic component classification, Resnet-50, Pre-trained  
neural network. 
 
 
1. Introduction 
 

Many computer vision problems focus on the 
classification of a single object against a simple 
background. It is necessary to define appropriate 
picture attributes for this purpose. Various visual 
characteristics are appropriate for various uses. The 
labelled data set and the features must be created in 
order for the classifier to be trained. Programmer 
understanding the domain of the analyzed images was 
necessary for the meticulous handwork involved in 
developing these applications. picture processing 
methods including picture enhancement, image 
filtering, and morphological processes were needed for 
this step. They made it easier to define appropriate 
characteristics for classes that are easily separable in 
low-dimensional space. Some algorithms for more 
difficult jobs, like mean-shift clustering, GrabCut, and 
watershed segmentation, were created based on the 
aforementioned principles. 

Another novel network architecture is GooggleNet 
to V4 [1]. Four parallel branches are present in the 
conception modules it employs. The network's breadth 
and flexibility to handle varying input image 
resolutions and scales are enhanced by this 
architecture. 

Deep learning can be accomplished practically 
with pre-trained models. A pre-trained model is one 
that has already undergone extensive training on a 
sizable dataset, typically related to an image 
classification problem. As a result, its spatial feature 

hierarchy can function as a general model for a range 
of computer vision issues. Pre-trained models can be 
used in two ways: fine-tuning and feature extraction. 
In order to extract important features from a fresh 
image, feature extraction makes advantage of the 
representation that a previously trained model has 
learned. Convolutional layers from previously trained 
networks are adopted, a new classifier is used in place 
of dense layers, and fresh samples are used to train the 
classifier. In addition to the new classifier, several 
convolutional layers in the fine-tuning techniques are 
also trained to identify other features in the images. 

A components’ package classification system 
based on a custom convolutional neural network was 
introduced in [2]. The proposed model could identify 
the 2D pattern of electronic components using nineteen 
features of surface mounting devices. The experiments 
demonstrated a 95.8 % accuracy of classification. 
Zhang [3] developed another custom network to 
classify electronic components into eleven categories. 
The custom network outperformed other pre-trained 
networks, such as Xception, VGG16, and VGG19, 
obtaining the highest accuracy in single-category and 
diverse component classification. 

To solve the problem of classifying electronic 
components using a small dataset, which proposed a 
Siamese network. According to the authors, this 
solution improves the classification quality of 
electronic components and reduces the training cost. In 
[4, 5] authors proposed a custom convolutional 
network for classifying capacitors, resistors, and 
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diodes. To analyse its performance, she compared it 
with the pre-trained networks: AlexNet, ShuffleNet, 
SqueezeNet, and GoogleNet. 

The technological process often employs constant 
lighting conditions, a static camera position and a fixed 
set of classified components, which can be completely 
different from the set dedicated to another task. 
Consequently, each process should possess its 
classification system based on an image acquisition 
module and a dedicated classifier trained on assigned 
objects. The system should be accurate and flexible, 
facilitating straightforward dataset creation and 
classifier development. 

Therefore, the motivation for the present work was 
to develop an accurate and flexible system for 
electronic part classification in industrial applications. 
To this end, an approach was proposed for a specific 
technological process of radio communication device 
manufacturing. It was aimed at classifying ten 
electronics components appointed by a product 
engineer. The components were utilised to construct a 
dataset, which could be effective for neural network 
training. The tested network structures employed  
pre-trained and custom networks since both structures 
have proved their applicability in previous research. 

The main contributions of this paper can be 
summarised as follows: The results are encouraging 
and show that the present method can accurately 
classify components in a specific technological 
process. Additionally, since its straightforward 
implementation, it can be effortlessly adapted to 
similar applications. 

 
 

2. Methodology 
 

Creating a system for classifying electronic parts 
for industrial use was the goal of the project. First and 
foremost, a vision system was created with this goal in 
mind. It made it easier to gather images in order to 
compile a dataset of electronic parts. A convolutional 
neural network baseline model was created using the 
generated dataset. It made it possible to verify the 
accuracy of the dataset and establish the foundation for 
neural network structures. The next step involved 
designing the network architectures. Pre-trained 
networks and a custom model were considered for this 
aim. Their single graphics processing unit (GPU) was 
used for the programming implementation, which was 
based on the publicly available TensorFlow 2 and 
Keras libraries. The steps that were taken are fully 
explained in this section. 

 
 

2.1. Dataset 
 

The dataset was collected using the designed vision 
system. It includes 3994 images of eleven classes: 
Class 0 (USB), Class 1 (integrated circuit), Class 2 
(fan), Class 3 (background), Class 4 (coil), Class 5 
(AUX), Class 6 (USB2), Class 7 (communication 
unit), Class 8 (connector), Class 9 (display) and  

Class 10 (processing unit). The classes constitute a set 
of fundamental electronic components for which 
automatic classification is profitable for the particular 
manufacturing process. 

The brightness of captured photographs can be 
affected by the camera's settings, even though it is 
presumed that lighting conditions are constant. 
Furthermore, there's a chance that the camera's 
distance from the object needs to be significantly 
changed. As a result, the process that was developed 
makes the assumption that photos should be taken in a 
variety of lighting and distance scenarios. 

 
 

2.2. Pretrained Networks 
 

Since fine-tuning demands a larger dataset, feature 
extraction was selected for pre-trained network 
investigations. Based on the literature review, the most 
promising network architectures were chosen: 

- VGG16; 
- VGG19; 
- ResNet50. 
The dense layers of the above networks were 

replaced with new classifiers (Table 1). Additionally, 
an image processing step was employed. It was 
because adopted networks expect different image 
formats at the input layer. For example, VGG16 
demands images converted from RGB to BGR and a 
zero-centred colour channel. This operation, as well as 
the programming implementation of the pre-trained 
networks, is very straightforward using the 
applications module of the Keras library. 

 
 

Table 1. Parameter of training and testing model  
(FC – Fully connected, SF – SoftMax function). 

 
VGG-16 VGG-19 ResNet-50 
FC-16 FC-32 FC-64 
SF-10 SF-10 SF-10 

 
 
The Resnet architecture follows two fundamental 

design principles. First, regardless of the size of the 
output feature map, there is the same number of filters 
in each layer. Second, to maintain the time complexity 
of each layer when the size of the feature map is 
halved, it has twice as many filters. The building block 
for Resnet employs a bottleneck design, which lowers 
the number of parameters and matrix multiplications. 
This makes training each layer considerably faster. 
Instead of using two layers, it employs a stack of three 
layers. The Resnet-50 model is a pre-trained 
convolutional neural network with 50 layers depth and 
can classify up to 1500 class (object image). To adapt 
this model to our classification problem, we have 
frozen the weights of the ten first layers and we have 
added one fully connected layer at the end, having  
2 neurons since we have a 2-class classification 
problem. For the classification, we have divided each 
set into 75 % for the training phase and 25 % for the 
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test phase and we have trained the Resnet-50 model for 
only 20 epochs. 

To develop an electronic components classification 
method based on convolutional neural networks, the 
proposed models are evaluated. For this purpose, 
numerous experiments were performed. Firstly, the 
different custom model structures were trained, and 
their performances were assessed using accuracy rates 
and learning curves. In the same way, pre-trained 
models with different classifiers were analysed. 
Finally, a comparative analyse was performed using 
the most promising custom and pre-trained models to 
find the best network for the classification task. 

Due to the stochastic nature of deep learning 
models, each network was trained ten times, and the 
mean accuracy was considered. Each of the ten training 
steps was performed with a different random seed 
value (random split of train and validation sets). 
However, the same ten training steps were deployed 
for all networks. Consequently, each network was 
trained with the same random seed values and hence 
with the same random splits of the dataset into test and 
validation sets. This procedure ensured the same 
training conditions for the analysed models. For final 
analyses, each chosen model was trained three times 
using the same random seed, and the best performance 
was evaluated. 

Each training step utilised a checkpoint 
mechanism. It allowed saving the network’s weights if 
the achieved accuracy at the epoch’s end was higher 
than the previously recorded one. In this way, the best 
models obtained during training were saved. 
 
 
3. Analysis and Evaluate Experimental  
    Results 
 

When we classified our images with Resnet-50 
model, we have obtained a value of 97.58 % for the 
training rate, a value of 97.04 % for the accuracy rate 
and 4 h 17 min 05 s for the execution time. Fig. 1 
illustrates the results obtained for the Resnet network. 
They indicate that only the network with the simplest 
classifier achieved good accuracy (>97 %). 
 
 

 
 

Fig. 1. The result of accuracy of ResNet-50. 

 
The generated learning curves (Fig. 2) suggest that 

overfitting is presented in this model. 

 
 

Fig. 2. The accuracy of learning curves ResNet-50. 
 

Data augmentation yielded only a slight 
improvement in accuracy. The regularisation 
techniques also had a minor impact on the ResNet50 
performance (Table 2). Data augmentation slightly 
increased accuracy for all models, while the 
application of dropout and weight regularisation 
improved the performance of the simplest model. 
 
 

Table 2. Classification results of VGG-16, VGG-19, 
Resnet-50 model. 

 
 VGG-16 VGG-19 Resnet-50 

Training 
rate (%) 92.25 92.30 97.58 

Accuracy 
(%) 92.10 90.05 97.04 

 
 
4. Conclusions 
 

The challenge of categorizing electronic 
components for industrial applications was tackled in 
this work. According to the results, the ResNet50 
architecture-based solution provides the highest 
classification accuracy. This paper developed a 
classification system, including creating databases, 
developing neural networks, and acquiring images. To 
enable other researchers to duplicate and alter the 
aforementioned procedures, each one is explained in 
great detail. Furthermore, the dataset and code are 
made available for simple implementation. The 
suggested remedy is intended for technological 
procedures that have a fixed camera position, 
consistent lighting, and a particular group of 
components that are classified. Still, a lot of image 
processing apps can make use of the aforementioned 
circumstances. For object classification, an indoor 
video surveillance system can make use of the  
current technique. 
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Summary: The burgeoning field of cybersexuality underscores the need to understand sexual presence within 
virtual reality (VR)—a state of sexual arousal and personal erotic perception experienced in virtual environments. 
This study introduces a novel method for analyzing psychophysiological signals to quantify sexual presence. Our 
research demonstrates the utility of this method, with empirical findings showing it accounts for a substantial 
variance in subjective sexual experiences among different genders during VR immersion with neutral and sexually 
personalized avatars. A notable aspect of this study is the identification of gender-specific patterns in response to 
VR stimuli, which has implications for both mental health and cybersecurity. This paper furthermore presents 
results from an atypical participants sexually aroused in the presence of a neutral android-like virtual character.  
 
Keywords: Virtual reality, Immersion, Psychophysiological signals, Sexual arousal, Sexual presence, Case study.  
 
 
1. Introduction 
 

With advancements in extended reality (XR) and 
artificial intelligence (AI) technologies rapidly gaining 
traction, particularly among Generation Z, there is a 
notable surge in interest in the cybersexual domain [1-
2]. Additionally, the advent of multimodal head-
mounted displays (HMDs) suitable for XR, integrating 
EEG, eye-tracking, and various physiological signals, 
has been highlighted as a substantial advancement  
[3-4].  

 
Sexual Presence: Definition  

Sexual telepresence, or sexual presence, is defined 
as a psychophysiological state of technologically 
induced sexual arousal, which includes not only a 
personal erotic perception but also an element of 
illusion, a convincing yet virtual experience that 
mimics physical interactions [5-6]. The technological 
trajectory from smart sex toys to XR-based sexual 
interactions and onward to humanoid sex robots 
illustrates the increasing use of pervasive computing to 
enhance intimate encounters. These technologies are 
not solely focused on fulfilling sexual desires but are 
designed to foster a sense of presence and intimacy, 
utilizing the principles of ubiquitous computing.  

This paper briefly outlines a newly developed 
methodology for examining sexual presence and 
shares insights from recent findings on measuring this 
peculiar subjective experience [7-8-9-10]. It also uses 
a case-study design to analyse an atypical arousal 
pattern found in one of our participants.  

2. Methodology 
 
We developed a digital avatar customization tool 

using Unity (Version 2018.4.4), offering fifteen 
features for users to intuitively modify avatars from the 
Genesis 8 collection, with tools like dropdown menus 
and sliders for detailed changes [7]. Users can alternate 
between facial and full-body views and rotate the 
avatar for a complete perspective. These avatars were 
animated using motion capture of male and female 
collaborators for sexual scenarios, and with pre-set 
motions from the “Y Bot” humanoid for neutral 
scenarios, utilizing Unity (Version 2020.3.36) for 
constructing and rendering digital environments, 
ensuring uniform lighting. The experiments were 
conducted at École de Technologie supérieure in 
Montréal, utilizing a high-spec computer with an 
Nvidia GeForce RTX 3080 graphics card, Intel Core 
i7-10700K CPU, and 32 GB RAM, alongside an HTC 
Vive Pro Eye Head-Mounted Display for immersive 
experiences. 

Penile tumescence was measured using penile 
plethysmography (PPG), where a mercury-filled, 
stretchable rubber band is placed around the penis mid-
shaft to detect engorgement through changes in 
electrical conductivity and mercury level. These 
changes, indicating variations in penile circumference, 
are calibrated and processed using Limestone 
Technologies’ DataPac and PrefTest Professional 
Suite. 

The vaginal plethysmograph (VPG) from Biopac 
employs an infrared LED to project light onto the 
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vaginal wall, with reflections measured by a 
phototransistor indicating blood volume changes. 
These changes are represented in millivolts from a 
baseline, analyzing the vaginal pulse amplitude to 
assess vascular pressure variations. Signal processing 
includes filtering for noise reduction and calculating 
statistical metrics like mean, standard deviation, 
variation coefficient, and area under the curve to 
understand physiological responses. 

 

 
 

Fig. 1. Appearance of the android-like (left) and realistic 
female sexually alluring (right) avatars; see reference [8]. 

Eye movement was tracked using the HTC Vive 
Pro Eye Head-Mounted Display with SRanipal SDK, 
which captures eye motion at 90 Hz. This technology 
offers precise tracking capabilities, with an accuracy 
ranging between 0.5 and 1.1 degrees, allowing for 
detailed recording of gaze behavior. The Gaze Radial 
Angular Deviation (GRAD) is described as the angle 
formed between two vectors: one extends from the 
center of the eye to a virtual measurement point 
(VMP), located on the target area, and the other 
represents the normalized direction of gaze from the 
SrAni-pal system. VMPs were placed at the facial, 
breast, and genital areas of the virtual characters to 
monitor (see Fig. 2).  

Electroencephalogram (EEG) data were collected 
using a cap with 32 active electrodes following the 10–
20 system, amplified by Brain Vision’s ActiChamp 
and recorded with MOVE and Recorder software. The 
EEG setup featured a 500 Hz sampling rate and 
filtering to address frequency-specific noise, 
establishing a real-time reference at the Cz electrode. 

In itself subjective sexual presence as a 
psychological construct is measured from a 
questionnaire [5]. 

 
 

 
 

Fig. 2. Psychophysiological signals from a typical male participant; from top to bottom for both android neutral virtual 
character and the sexually customized one: GRAD, EEG asymmetry in F3-F4 and sexual response measured from PPG. 

 
 

Recruitment for the study was achieved through 
social media posts, printed leaflets, email campaigns, 
and word of mouth. This research was a component of 
a broader project detailed in Saint-Pierre Côté et al., 
2023. The study included eleven cisgender male 
participants with an average age of 26.1 and a standard 
deviation of 8.80. Briefly, the participants were tasked 
with creating a personalized nude avatar of the 
opposite sex and an environment designed to 

maximize their sexual interest. In the virtual reality 
(VR) setting, they were exposed to various 
combinations of avatars and environments, including 
their personalized creations and a standard set 
provided for all participants of the same sex, as well as 
an android-like avatar. 

The case study results discussed below pertain 
exclusively to this male sample. 
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Fig. 3. Typical female sexual response measured from PPG 
for both android neutral virtual character and the sexually 

customized one. 
 
 

Data Analysis: EEG Dynamic Cross Entropy 
(DCE) 

 
Explained elsewhere [8], EEG DCE computation 

was used to quantify brain synchronization during 
sexual arousal prompted in virtual immersion.  

The processing of EEG data was executed through 
Analyzer 2.1 by Brain Vision, identifying and 
removing noisy channels through visual examination. 
A subsequent ocular ICA using the mean slope 
approach, condition-specific data sets, and the Infomax 
along with sum of squared correlations techniques in 
Analyzer facilitated the elimination of components 
primarily consisting of vertical and, where necessary, 
horizontal eye-movement EEG artifacts. The data were 
then re-referenced to the average mastoid signal. For 
the eleven participants, the 30-second data segments 
were free from additional artifacts and remained 
unmodified. 

Dynamic Cross-Entropy (DCE), as outlined by Aur 
and Villa-Rodriguez [11], serves to gauge the 
regularity and intricacy across several time series, 
especially within various frequency bands (see Eq. 1). 
It diverges from conventional entropy assessments by 
gauging the joint intricacy of multiple signals rather 
than a solitary one. DCE employs entropic metrics like 
Sample Entropy (SampEn) for each band-pass-filtered 
signal to focus on pertinent frequencies. The aggregate 
entropic values are then averaged to deduce the DCE, 
showcasing the collective regularity or intricacy, 
thereby aiding in the analysis of activity 
synchronization across different channels, such as in 
EEG, revealing the spatial and synchrony patterns of 
neural activities. The DCE’s sensitivity to time series 
regularities is contingent on the chosen parameters for 
entropy evaluation, utilizing an m value of 2 and  
a r value of 3.57 in all DCE analyses as per Aur and 
Villa-Rodriguez (2017). Custom scripts, primarily in 
Python version 3.10.0, were employed for DCE 

calculations, incorporating relevant libraries and 
adhering to Aur and Villa-Rodriguez’s methodology. 

𝐷𝐷𝐷𝐷𝐷𝐷�𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑐𝑐�
(𝑗𝑗) =  

1
∑ 𝐸𝐸𝐸𝐸(𝑦𝑦𝑖𝑖)

(𝑗𝑗)𝑐𝑐
𝑖𝑖=1

 

 
Equation 1. Mean DCE calculation, where yi, is the 
individual signal (i.e., time series); En(yi) is the entropy 
measure (here, SampEn) for a given yi; c is the number of 
signals considered together. 
 

The procedure for DCE calculation involves:  
1) Band-pass filtering of each signal to target specific 
frequency bands; 2) applying complexity entropy 
metrics, notably SampEn, to each filtered signal 
segment; 3) normalizing the averaged DCE across all 
segments and signals via the min-max method, 
adjusting the DCE values relative to the lowest and 
highest DCE values noted. The DCE analysis 
encompassed the alpha (8 – 13 Hz), beta (13 – 30 Hz), 
and their sub-bands including low alpha (8 – 10.5 Hz), 
high alpha (10.5 – 13 Hz), low beta (13 – 20 Hz), and 
high beta (20 - 30 Hz). 
 
 
3. Results 

 
Findings reported in other studies demonstrated 

that this methodology accounted for 73 % of the 
variance in subjective sexual presence among female 
participants [9], and explained 86 % of the variance in 
responses of a male sample when comparing their 
immersion experiences with a neutral android versus a 
personalized sexual avatar [8]. 

Furthermore, a case study results demonstrate that 
the area under the curve (AUC) of the EEG DCE 
signal allows for the detection of an atypical male case 
who exhibited a significant sexual response to the 
sexually neutral stimulus, namely the android 
character (see Fig. 1).  

This participant (23 yr old) is the only one among 
our 11 male cisgender heterosexual participants who 
displayed a significant erectile response in this 
condition. His response, expressed in mm of 
circumferential stretching of the penile gauge is of  
6.4 while the group average is 1.21 mm (SD=1.28). 
This gives him a Z-score of 4.05 (which corresponds 
to a p-value less than 0.0001). It is worth mentioning 
however that, following the group, the participant’s 
erectile responses to the human sexual 
avatar were greater than that for the android character. 
Therefore, the intriguing aspect of this case lies in the 
fact that the individual experienced sexual arousal 
under a non-sexual condition.  

This participant’s EEG DCE AUC for F3-F4 
frontal leads in alpha is of 76902 while the average 
value for the rest of the group is 27983 (SD=8921).  
Z-score for this value equals 5.5 standard deviations 
from the mean, which corresponds to a p-value less 
than 0.0001, signifying that the result is highly 
significant statistically. Such a result could suggest 
that the participant's brain activity, as measured by the 
EEG DCE AUC in the specified condition, is 
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atypically higher than that of his peers, potentially 
indicating a notable difference in alpha frontal activity 
synchronization. This difference could explain why 
this particular individual presented this unusual sexual 
response to such a stimulus.  

This EEG finding aligns with another unique aspect 
of this case: specifically, his average Gaze Radial 
Angular Deviation (GRAD) from the genital Virtual 
Measurement Point (VMP) of the neutral character 
exceeded that of the rest of the group. With an average 
GRAD of 7.43 deg, this participant stands at 2.9 SD of 
the sample average (5.5 deg; SD=1.3). This Z-score 
corresponds to a p-value less than 0.01. His gaze 
behavior exhibited greater dispersion in the vicinity of 
the animated character with a neutral sexual portrayal. 

On a more psychosocial level, this individual 
appears to overinvest in the sexual sphere, reporting an 
average of 13 orgasms per week compared to an 
average of 4.15 for the rest of the group (SD=3.24), 
with a z-score of 2.73 (p-value less than 0.01). He also 
reported a high score on the Game scale of the 
Immersive tendencies questionnaire [12]. This scale is 
specifically designed to assess an individual’s 
propensity to engage in play, be it in video games, 
simulations, or other immersive play activities. A high 
score on this scale indicates that this individual has a 
strong tendency to actively engage and immerse 
himself in playful activities.  

Finally, he reported an unusually high score of 
naturalness for the android neutral character on the 
Uncanny valley questionnaire [12] compared to the 
rest of the sample (AVG=11,2; SD=15). His Z-score 
on that matter is of 1,92 (p-value less than 0.05). This 
same participant did not show an unusual score on that 
matter when assessing the sexual avatar with the same 
questionnaire.  

To summarize, this case study highlights an 
atypical sexual arousal case, specifically an erectile 
response in an adult male within a sexually neutral 
virtual context. While it is certainly possible for 
someone to experience a spontaneous erection in a 
sexually irrelevant context (due to fantasies or purely 
metabolic reasons), the case at hand is peculiar in 
several respects. It exhibits elements of sexual 
overinvestment, a strong propensity to immerse in 
gameplay, and a subjective assessment of the android 
character’s realism leaning towards a more 
pronounced naturalness or realism compared to the 
rest of the group. 

However, what is particularly interesting here is 
how the brain dynamics in the frontal region, 
interacting with the perceptuo-motor extraction 
process governing the interaction with the virtual 
stimulus, distinguishes this case from the rest of his 
group. In light of the previously mentioned 
psychosocial dimensions, perhaps we have here 
elements that explain the uniqueness of this case. At 
the very least, this difference in terms of 
psychophysiological mobilization in an immersive 
context constitutes a trail for a counterpoint analysis 
that is interesting to better understand how the feeling 
of sexual presence emerges. 

Although interesting, these results and especially 
the single-case method from which they derive, have 
numerous limitations. Firstly, the very limited number 
of participants restricts the ability to generalize the 
results; a larger sample would allow for further 
validation of the characteristics of this atypical case, 
should they prove to be true. It is also difficult to 
establish a causal pattern following the isolated factors 
because other uncontrolled variables in the study may 
come into play. Furthermore, the statistical methods 
used are very limited and are employed here primarily 
for exploratory purposes. 

 
 

4. Conclusions 
 
As the global market for virtual reality (VR) 

pornography is projected to surpass a billion-dollar 
valuation by the year 2027, the phenomena of 
cybersexuality and sexual presence demand earnest 
consideration [1]. Accompanying this remarkable 
market expansion are potential challenges related to 
mental health and cybersecurity. Consequently, it 
becomes imperative to develop innovative and 
effective methodologies for the analysis and more 
identification of sexual presence through objective 
physiological and behavioral indicators [10]. 

In conclusion, this study contributes to the 
understanding of sexual presence by focusing on an 
atypical case identified through psychophysiological 
signals. The use of multimodal HCI technologies, as 
per reference [10], could allow for a more nuanced 
observation of individual responses to virtual sexual 
stimuli. 

Our research underlines the importance of 
individual differences in the study of virtual 
environments and sexual presence. It points to the 
potential of these technologies to provide personalized 
insights, which can be critical for advancing research 
and practical applications in the field of sexual health, 
cybersecurity and virtual reality experiences. 
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Summary: This study investigates the impact of Loop Closing on the localization accuracy of Visual Simultaneous 
Localization and Mapping (Visual SLAM) systems in unstructured agricultural environments, focusing on ORB-SLAM3, 
VINS-Fusion, and OpenVINS enhanced with Loop Closing. We assess each systems' performance in various scenarios to 
determine their efficiency and accuracy using Absolute Trajectory Error (ATE) and computational resource metrics. ORB-
SLAM3 demonstrates a modest increase in computational demand with notable accuracy gains, making it efficient for 
applications where resources are limited. VINS-Fusion benefits from Loop Closing in smaller environments but faces 
significant challenges and high computational costs in larger settings. OpenVINS, when integrated with VINS-Fusion's Loop 
Closing, achieves consistent accuracy improvements but with substantial memory usage. The combination of OpenVINS and 
Maplab's offline Loop Closing offers the most significant accuracy enhancements, although it lacks computational 
performance data due to its offline nature. This research highlights the importance of selecting appropriate SLAM 
configurations based on environmental complexity and computational constraints. 
 
Keywords: Visual SLAM, Localization, Loop closing, Unstructured environments, Agricultural robotics. 
 
 
1. Introduction 
 

Visual SLAM techniques have enabled a multitude 
of applications in robotics, particularly in outdoor 
scenarios where GPS may be unreliable. The ability of 
Visual SLAM systems to autonomously construct and 
update maps of their surroundings while 
simultaneously determining their own position has had 
great impact on the field of autonomous navigation. 
However, the accumulation of drift, resulting from 
errors in estimating the robot’s motion over time, 
remains a significant challenge in practical 
applications. Especially for applications that have a 
long runtime, it is important to create a consistent and 
robust system that shows sufficient resistance to drift. 

Loop Closing is a crucial technique developed to 
reduce drift in Visual SLAM systems. By identifying 
and correcting loops in the robot’s trajectory, Loop 
Closing aims to ensure long-term localization 
accuracy. Whilst theoretically promising, Loop 
Closing introduces practical challenges, especially 
regarding the limited availability of computational 
resources in mobile robots. 

This paper aims to investigate the impact of Loop 
Closing on Visual SLAM performance in outdoor 
robotics, considering the constraints of mobile 
platforms. The study provides an exhaustive analysis 
of multiple aspects concerning Loop Closing and its 
impact on the deployment of Visual SLAM systems in 
real-world environments. Our contributions include: 
1. Benchmarking open-source Visual SLAM 

methods: We conduct a comprehensive evaluation 
of various open-source Visual SLAM methods in 
unstructured outdoor environments; 

2. Quantitative analysis of Loop Closing Effects: We 
assess the influence of Loop Closing on 
localization accuracy across diverse driving 
scenarios and environmental conditions; 

3. Resource analysis: We examine the additional 
computational overhead imposed by Loop Closing 
compared to SLAM methods without Loop 
Closing. 
The remainder of this paper is structured as 

follows: Section 2 highlights existing Visual SLAM 
benchmarks in various environments and settings. 
Section 3 details the experimental setup, including 
specific Visual SLAM methods, dataset description, 
and evaluation criteria. Section 4 presents the results 
and discusses their implications and relevance for 
autonomous navigation. Finally, Section 5 concludes 
the paper, summarizing key findings and proposing 
future research topics. 
 
 
2. Related Work 
 

The literature on SLAM systems provides insights 
into applications, difficulties, and performance in a 
variety of scenarios, highlighting their significance in 
the development of robotic navigation. This chapter 
focuses on benchmarks for Visual and Visual-Inertial 
SLAM, essential for the evaluation and comparison of 
their performance. 

Numerous benchmarks [1-4] have been established 
to systematically evaluate the efficacy of 
contemporary Visual and Visual-Inertial SLAM 
algorithms through the use of renowned datasets such 
as EuR oC [5], KITTI [6], and TUM RGB-D [7]. These 
benchmarks offer a systematic framework to assess 
algorithms across diverse environments, from indoor 
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spaces to unpredictable outdoor settings, incorporating 
various robotic platforms, such as drones, mobile 
robots, and cars. Furthermore, the benchmarks [1] and 
[4] evaluate the computational performance of the 
SLAM algorithms in addition to the localization 
accuracy, with [4] differentiating between various 
embedded computing platforms. 

Apart from common benchmarks, [8] and [9] 
specifically explore Visual-Inertial SLAM 
applications in particular contexts, demonstrating their 
adaptability and potential constraints in challenging 
environments. [8] evaluates ten open-source Visual-
Inertial SLAM algorithms in marine settings, a notably 
challenging environment for SLAM technologies due 
to factors like low visibility and dynamic lighting 
conditions. The comprehensive analysis uses datasets 
from underwater robots, offering insights into the 
performance of direct and feature-based SLAM 
methods. [9] investigates the feasibility of applying 
monocular Visual-Inertial SLAM methods to freight 
railways. This study demonstrates that Visual-Inertial 
methods encounter considerable challenges in such 
environments, particularly with scale estimation errors 
and a high propensity for failure due to the constrained 
motion patterns inherent to such settings. 

Benchmarks in agricultural environments 
underscore the nuanced demands of applying SLAM 
technologies to agriculture, characterized by dynamic 
conditions and complex landscapes. [10] evaluates 
SLAM systems in a simulated vineyard, illustrating the 
potential of SLAM in precision agriculture. [11], 
covering state-of-the-art stereo Visual-Inertial SLAM 
systems on an arable farming dataset, sheds light on 
the operational challenges these technologies face 
within agricultural contexts, specifically in soybean 
fields. This study not only assesses performance 
metrics, such as accuracy and robustness, but 
addresses the adaptability of SLAM systems to the 
distinct characteristics of arable farming, e.g., 
variability of crop height and the impact of 
environmental factors like wind and lighting 
conditions. 

In this paper, we identify key gaps in the existing 
literature that we aim to address. Notably, there is a 
lack of benchmarks in unstructured outdoor 
environments, such as gardens or parks, where SLAM 
technologies could significantly contribute to 
agricultural applications. These environments present 
unique challenges due to their less defined landscapes 
and potential for rapid changes in environmental 
conditions. Furthermore, existing benchmarks did not 
specifically focus on various driving scenarios within 
these landscapes, nor have they quantitatively assessed 
the influence of Loop Closing and its associated 
computational effort. This paper aims to fill these gaps 
by presenting a comprehensive evaluation of SLAM 
algorithms in these underexplored environments, 
providing insights into performance and computational 
demands across different operational scenarios. 
 
 
 

3. Experimental Setup 
 

In this section, we first describe the dataset used for 
the benchmark. Then, we subsequently introduce the 
selected Visual-Inertial SLAM algorithms chosen for 
evaluation on the aforementioned dataset. Lastly, we 
describe the evaluation methodology in more detail. 
 
 
3.1. Data 
 

For data recording, we utilized an unmanned 
ground vehicle (UGV) equipped with an Intel 
RealSense T265. The camera is augmented with an 
Inertial Measurement Unit (IMU) and captures 
imagery at a frequency of 30 Hz with a resolution of 
848 × 800 px, while the IMU records data at 65 Hz. At 
a frequency of 3 to 6 Hz, 3 DOF positional ground truth 
data was obtained with a Leica TS16 tachymeter 
resulting in a positional accuracy below 1 mm. 

We recorded various sequences, focusing on 
unstructured outdoor environments that encompass 
diverse garden sizes and a park-like expanse, as 
depicted in Fig. 1. Additionally, we considered a 
variety of driving scenarios, delineated into two 
categories: Perimeter and Lane. In the Perimeter 
scenario, the robot traverses irregular paths, 
completing multiple circuits around the perimeter of 
the designated area. Conversely, in the Lane scenario, 
the robot adheres to parallel trajectories resembling 
lanes, incorporating multiple 180° turns. Further 
information on the different locations and driving 
scenarios are shown in Table 1. 

 
 

 
 

Fig. 1. Different dataset recording environments. Top left 
shows the Garden Small, top right Garden Medium, bottom 

left Garden Large and bottom right Park scenario. 
 
 

Table 1. Dataset characteristics. 
 

Sequence Scenario Duration [s] Distance [m] 
Garden 
Small 

L 162 45.2 
P 360 167.4 

Garden 
Medium 

L 264 89.0 
P 467 167.4 

Garden 
Large 

L 351 123.4 
P 789 299.7 

Park L 210 43.7 
P 438 164.2 
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3.2. Algorithms 
 

For this benchmark, we exclusively focus on  
open-source SLAM algorithms that utilize the ROS 
framework. One of the methods analyzed is  
ORB-SLAM3 [12], which is a multimodal feature- and 
optimization-based approach including an integrated 
Loop Closing mechanism. The system is structured 
into three threads: tracking thread, local mapping 
thread, and loop and map merging thread. The tracking 
thread determines the current frame’s pose by 
minimizing reprojection errors with ORB features and 
selectskeyframes. The local mapping thread improves 
the map by adjusting keyframes locally. Lastly, the 
loop and map merging thread identifies revisited areas 
using a bag-of-words keyframe database and executes 
loop closures for map accuracy by applying global 
bundle adjustment. 

Another method examined is VINS-Fusion [13], a 
versatile sensor fusion framework that leverages both 
visual and inertial cues for state estimation. This 
system operates through multiple modules. Initially, 
the state estimation module calculates the device’s 
pose by fusing data from cameras and IMUs, ensuring 
accurate trajectory and orientation determination. The 
mapping module then refines this information by 
integrating environmental features, enhancing the 
spatial awareness of the system. In addition, VINS-
Fusion incorporates Loop Closing that identifies 
previously visited locations and employs a global 
optimization process to minimize drift over time. 

Another approach is OpenVINS [14], a feature- 
and filter-based method of visual-inertial navigation, 
utilizing tightly-coupled integration of camera and 
IMU data for precise state estimation. It employs 
feature tracking alongside a Kalman filter framework 
and sliding window optimization, efficiently handling  
high-frequency IMU data and visual inputs to update 
poses and velocities accurately. Although OpenVINS 
does not include Loop Closing by default, it is 
designed with modularity in mind, allowing for the 
integration of the Loop Closing module from VINS-
Fusion, as applied in this study. Further, Maplab [15] 
can be used to enhance OpenVINS by adding Loop 
Closing capabilities in an offline manner. This is 
achieved by processing maps generated by OpenVINS 
through Maplab’s optimization and loop closure 
detection tools, which can identify revisited areas and 
perform global map optimizations. 
 
 
3.3. Evaluation 
 

In Visual and Visual-Inertial SLAM systems, 
maintaining the global accuracy of the predicted 
trajectory is crucial. This accuracy is assessed by 
measuring the absolute differences between the 
estimated trajectory and the ground truth trajectory. 
Since these trajectories may be presented in different 
coordinate systems, they must be aligned first. 
Umeyama’s method [16], which identifies the 
transformation that yields the optimal least-squares 

solution to map the estimated trajectory onto the 
ground truth trajectory, can be used to solve this 
alignment in closed form. We then compute the root 
mean squared absolute trajectory error (RMSE ATE) 
as the main metric to quantify the deviation between 
estimated and ground truth positions. It is defined by 
 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑝𝑝1:𝑛𝑛, 𝑝̂𝑝1:𝑛𝑛) =  �1
𝑛𝑛

 ∑ ‖𝑝𝑝𝑖𝑖 − 𝑝̂𝑝𝑖𝑖‖2𝑛𝑛
𝑖𝑖 = 1 ,  

 
where 𝑝𝑝 is the ground truth trajectory, 𝑝̂𝑝 the estimated 
trajectory after alignment, and 𝑛𝑛 the total number of 
corresponding points in the trajectories. To verify the 
reliability and reproducibility of our results, we assess 
the SLAM algorithms by conducting five trails on each 
dataset sequence before calculating the average ATE 
using the open-source evaluation toolbox Evo [17]. 

In addition to evaluating accuracy, we analyze 
CPU as well as memory utilization to understand the 
computational demands of each Visual SLAM method 
and Loop Closing. Since we rely on ROS-based 
algorithms, the CPU and memory utilization of the 
corresponding ROS nodes can be determined 
accurately. All experiments have been conducted on an 
Intel Core i9-13900HX with 64 GB RAM, operating 
within a Docker container based on Ubuntu 20.04. 
 
 
4. Results and Discussion 
 

In this section, we present the outcomes of our 
comprehensive assessment, which investigates the 
effects of implementing Loop Closing on the 
localization accuracy and computational demands of 
various SLAM algorithms. This evaluation utilizes the 
default configurations and parameters of the open-
source algorithms to ensure that the analysis accurately 
reflects their typical performance. All methods are 
used in stereo-inertial mode, operating on the data 
provided by the Intel RealSense T265. 
 
 
4.1. Localization Accuracy 
 

The ATE is the primary metric used to assess 
localization accuracy. Table 2 provides a comparison 
of the RMSE ATE for the SLAM algorithms tested 
across the different scenarios. 

For ORB-SLAM3, the integration of Loop Closing 
showed no improvements in the Garden Small 
sequences, maintaining an ATE of 0.53 m and 0.56 m 
for Perimeter and Lane scenarios, respectively. A 
notable enhancement was observed in the Garden 
Medium sequence’s Perimeter scenario, where the 
ATE decreased from 0.77 m to 0.48 m with Loop 
Closing, illustrating its potential to significantly 
mitigate drift. However, ORB-SLAM3 encountered 
limitations in the Garden Medium Lane scenario, 
indicating possible challenges with complex 
navigation paths that Loop Closing could not 
overcome since every trial failed. Minor reductions in 
ATE were also seen in larger sequences like Garden 
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Large and Park, demonstrating the effectiveness of 
Loop Closing in various contexts, albeit with 
limitations in certain complex scenarios. 

VINS-Fusion showed accuracy improvements with 
Loop Closing in smaller environments, such as the 
Garden Small and Garden Medium sequences. 
However, when it comes to larger settings, the method 
exhibited inconsistent performance and outright 
failures. For instance, VINS-Fusion failed to produce 
results for the Garden Large scenarios. This indicates 

a distinct limitation in handling expansive and 
complex environments with this method. In contrast, 
for the Park sequence, albeit large, we saw a reduction 
in ATE with Loop Closing activated, suggesting some 
potential for improvement in large spaces. 
Nonetheless, the inconsistent outcomes and failures in 
certain scenarios emphasize that VINS-Fusion requires 
significant enhancements to reliably extend the 
advantages of Loop Closing across a broader range of 
environments. 

 
 

Table 2. RMSE ATE in meters of different SLAM algorithms with and without Loop Closing in various environments  
and changing driving scenarios where P stands for Perimeter and L for Lane. An x indicates that the method failed. 

 

Method Loop 
Closing 

Garden 
Small 

Garden 
Medium Garden Large Park Average 

P L P L P L P L P L 

ORB-SLAM3 Off 0.53 0.56 0.77 x 1.12 0.82 0.94 0.52 0.84 0.63 
On 0.53 0.56 0.48 x 1.06 0.69 0.89 0.49 0.73 0.58 

VINS-Fusion Off 1.91 1.30 2.13 0.89 x x 2.01 x 2.02 1.09 
On 1.85 1.16 2.03 0.87 x x 1.90 x 1.93 1.02 

OpenVINS & 
VINS-Fusion 

Off 0.77 0.60 1.29 0.66 1.13 10.29 1.68 0.43 1.22 3.00 
On 0.74 0.53 1.03 0.60 0.94 10.25 1.59 0.59 1.07 2.99 

OpenVINS & 
Maplab 

Off 0.77 0.60 1.29 0.66 1.13 10.28 1.67 0.46 1.21 3.00 
On 0.58 0.48 0.56 0.51 0.72 0.76 1.02 0.45 0.72 0.55 

 
 

Examining OpenVINS along with the Loop 
Closing module of VINS-Fusion or the offline 
optimization of Maplab demonstrated the most 
consistent and substantial improvements in 
localization accuracy with Loop Closing. Note that the 
results of OpenVINS without Loop Closing differ 
minimally, as all trials were made for each of the two 
Loop Closing variants respectively. OpenVINS paired 
with VINS-Fusion demonstrated a uniform 
enhancement across all tested scenarios, particularly 
reducing the ATE in the Perimeter scenario. More 
impressively, the integration of OpenVINS with 
Maplab yielded substantial accuracy gains, especially 

notable in the Garden Large Lane scenario where the 
ATE decreased from 10.28 m to 0.76 m, whereby the 
combination of OpenVINS and VINS-Fusion was not 
able to correct this substantial drift. Overall, the 
integration of Maplab had the greatest impact on 
localization accuracy and provides the best results. 
 
 
4.2. Computational Efficiency 
 

The implementation of Loop Closing affects the 
computational resources required by the SLAM 
algorithms as can be seen in Fig. 2. 

 
 

 
 

Fig. 2. CPU and memory usage of VINS-Fusion (VF) in red, OpenVINS (OV) in blue as well as ORB-SLAM3 (ORB) in 
green with and without Loop Closing (LC) running the algorithms on the sequence Garden Medium Perimeter.

 
 
ORB-SLAM3 displayed a moderate increase in 

computational resources when Loop Closing was 
enabled, with CPU usage growing from 399 % to  
456 %. Similarly, its memory consumption saw an 

uptick from about 890 MB to 1036 MB. This increase 
is rather minor, considering the accuracy 
improvements provided by Loop Closing. 
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The impact of Loop Closing on VINS-Fusion was 
more pronounced, with CPU usage escalating from 
260 % to 359 %. Memory usage exhibited a dramatic 
increase, from a mere 113 MB to 5031 MB with Loop 
Closing. This substantial jump in memory usage 
underscores the computational intensity of  
VINS-Fusion with Loop Closing, reflecting its 
potential limitation in resource-constrained 
environments. 

OpenVINS with the Loop Closing module of 
VINS-Fusion showed a significant increase in CPU 
usage from 71 % without to 130 % with Loop Closing. 
Memory usage also increased from 309 MB to  
3483 MB when Loop Closing was enabled. Although 
the increase in computational resources is notable, the 
efficiency of OpenVINS with Loop Closing, 
compared to VINS-Fusion, suggests a better balance 
between computational demand and localization 
accuracy. Note that there are no direct results for the 
combination of OpenVINS and Maplab in an online 
scenario, since the maps created by OpenVINS are 
optimized post-factum in an offline manner by 
Maplab. 
 
 
4.3. Discussion 
 

Regarding the impact of Loop Closing on SLAM 
algorithms, our study reveals that, while Loop Closing 
broadly enhances localization accuracy, its influence 
on computational demands significantly diverges 
across different systems. This divergence highlights 
an essential strategic balance that must be struck 
between accuracy enhancement and the management 
of computational resources. Further, the distinction in 
performance between driving scenarios, i.e., 
Perimeter and Lane, nuances our understanding of 
Loop Closing's effects, underlining the importance of 
context in evaluating SLAM system performance. 

For ORB-SLAM3 augmented with Loop Closing, 
we observed a uniform improvement in localization 
accuracy across several scenarios, with only a 
moderate uptick in computational resource usage. This 
suggests ORB-SLAM3's viability in scenarios where 
enhanced precision is critical and some increase in 
computational resources is acceptable. In the 
Perimeter scenario, ORB-SLAM3 with Loop Closing 
managed to significantly reduce drift, underscoring its 
efficacy in environments with less structured paths. 
Conversely, in the Lane scenario, specifically in 
complex environments, ORB-SLAM3 faced 
challenges, indicating a need for refinement to handle 
such navigation tasks effectively. 

VINS-Fusion, upon incorporating Loop Closing, 
displayed marked improvements in localization 
accuracy in smaller environments. Its performance, 
however, was markedly constrained in larger spaces, 
where it encountered significant limitations. These 
were particularly evident in the Lane scenario within 
expansive environments, where the computational 
demand surged dramatically, as reflected in the 
memory usage spikes. This pattern suggests that, 

while VINS-Fusion can be highly effective in smaller, 
more controlled settings, optimizing its use in larger or 
more complex environments requires addressing its 
computational inefficiencies. 

OpenVINS, paired with the Loop Closing module 
from VINS-Fusion, showed a notable increase in 
localization accuracy, though at the cost of an 
increased computational load. This compromise may 
be strategic for certain applications, combining the 
benefits of Loop Closing with manageable 
computational demands. Remarkably, in both 
Perimeter and Lane scenarios, the integration of 
OpenVINS with Maplab executed in an offline manner 
exhibited the most considerable accuracy 
improvements. This suggests that for applications 
where delayed processing is acceptable, leveraging 
offline Loop Closing could achieve superior 
localization accuracy without the immediate 
computational burden. 

The varied impact of Loop Closing on different 
SLAM systems, especially when considering the 
specific driving scenarios of Perimeter and Lane, 
underscores the critical need for tailored SLAM 
configurations. These adaptations should be 
conscientiously selected based on the operational 
requirements and the computational limitations at 
hand. The demonstrated variance in performance 
across different scenarios emphasizes the importance 
of context in deploying SLAM technologies, 
particularly in agricultural and other unstructured 
environments where navigation paths can significantly 
affect system performance. Our findings advocate for 
a nuanced approach to integrating Loop Closing in 
SLAM systems, one that not only considers the overall 
benefits in localization accuracy but also pays close 
attention to the unique demands of specific operations. 
This approach necessitates ongoing optimization 
efforts and strategic thinking about the use of 
computational resources to enhance the utility and 
applicability of SLAM technologies across a broad 
spectrum of settings. 
 
 
5. Conclusion 
 

In our exploration of the impact of Loop Closing 
on Visual SLAM systems within agricultural and 
unstructured settings, we critically evaluated  
ORB-SLAM3, VINS-Fusion, and OpenVINS 
enhanced with VINS-Fusion’s as well as Maplab's 
Loop Closing method. The study's results underscore 
the crucial role of Loop Closing in substantially 
improving localization accuracy, particularly in 
environments where unpredictability could lead to 
significant drift. 

A significant observation from our analysis is the 
different computational demand imposed by Loop 
Closing across the evaluated SLAM systems. Notably, 
ORB-SLAM3, despite its generally high CPU usage, 
experiences minimal additional computational load 
upon integrating Loop Closing. This minimal increase 
in resource usage, in contrast to the significant decline 
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in ATE, firmly supports the integration of Loop 
Closing in ORB-SLAM3 as a worthwhile 
enhancement for applications requiring high precision 
without substantial additional computational costs. 
Conversely, integrating the Loop Closing module 
from VINS-Fusion into OpenVINS leads to a 
considerable uptick in memory usage, despite offering 
consistent improvements in localization accuracy. 
This increased demand for memory resources 
highlights a trade-off between achieving higher 
accuracy and the associated computational costs. 
Nevertheless, OpenVINS with Maplab’s offline Loop 
Closing emerges as the standout in terms of accuracy 
enhancement, albeit without available data on 
computational performance due to its offline 
processing nature. Moreover,  
VINS-Fusion’s performance is notably lower than the 
other two SLAM methods, encountering considerable 
difficulties in larger environments despite the benefits 
derived from Loop Closing. The computational 
demand for VINS-Fusion presents substantial 
challenges, with Loop Closing offering accuracy 
benefits but at the highest computational cost among 
the methods evaluated. 

Future directions for research include assessing the 
computational efficiency of offline Loop Closing 
methods, such as those offered by Maplab, and their 
integration into real-time systems. Exploring deep 
learning-based Loop Closing techniques could also 
offer avenues for accuracy improvements with 
potentially reduced computational demands. 
Expanding these findings to broader applications and 
integrating multi-modal sensor data with SLAM 
systems could further enhance localization robustness 
and accuracy across various scenarios. 
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Summary: This research focuses on developing an automated classification system to distinguish between Paroxysmal Atrial 
Fibrillation (PAF) and Normal Sinus Rhythm (NSR) using ECG signals. The methodology leverages Continuous Wavelet 
Transform (CWT) for signal processing and Convolutional Neural Networks (CNN) for machine learning, achieving an 
impressive 94 % accuracy. This innovative approach highlights the potential of integrating DSP and ML for enhanced PAF 
detection. Key findings demonstrate a significant improvement in detection accuracy, showcasing the potential of this 
innovative approach. The study's significance lies in its contribution to automatic medical diagnostics, offering a promising 
direction for future research and potential clinical applications in the efficient and timely identification of PAF. 
 
Keywords: Deep learning (DL), Continuous wavelet transform (CWT), Electrocardiogram (ECG) and Atrial disease 
classification (ADF). 
 
 
1. Introduction 
 

PAF is an intermittent type of arrhythmia that poses 
significant health risks and challenges in detection. 
Accurate and timely identification is crucial for 
effective management. Despite the availability of  
long-term ECG recording devices, the transient nature 
of PAF episodes makes detection labor-intensive and 
time-consuming. This study aims to leverage the 
abundance of ECG data and advanced digital signal 
processing (DSP) and machine learning (ML) 
techniques to improve the accuracy and efficiency of 
PAF detection [1]. 

PAF represents a significant challenge within the 
landscape of cardiovascular diseases, characterized by 
sudden, intermittent episodes of atrial fibrillation (AF) 
that can revert to normal sinus rhythm without 
intervention. This condition not only increases the risk 
of stroke and heart failure but also complicates the 
diagnostic process due to its transient nature [2]. 
Current detection methods largely rely on ECG, which, 
while effective in continuous monitoring, often require 
manual interpretation and may miss shorter episodes of 
PAF due to their sporadic occurrence [3]. 

The advent of DSP techniques has opened new 
avenues for the analysis of ECG signals, providing 
tools that can enhance the sensitivity and specificity of 
PAF detection [4]. CWT, a method known for its 
ability to decompose non-stationary signals into  
time-frequency representations, offers a nuanced 
approach to identifying the complex patterns 
characteristic of PAF episodes. This technique allows 
for the detailed analysis of ECG signals, highlighting 
variations in heart rhythm that are indicative of atrial 
fibrillation [5-9]. 

Moreover, the integration of deep learning 
methods, particularly CNN, with DSP techniques 
marks a significant advancement in the field [7, 9]. 

CNNs are adept at recognizing patterns within large 
datasets, making them an ideal tool for analyzing the 
intricate features extracted through CWT [5]. By 
training these networks on labeled datasets of ECG 
signals, it becomes possible to automate the detection 
process, significantly reducing the time and expertise 
required to diagnose PAF. 

The combination of CWT and CNN not only 
leverages the strengths of both approaches but also 
addresses the limitations of traditional detection 
methods. This synergy enhances the accuracy of PAF 
detection, offering a promising solution to the 
challenges posed by its paroxysmal nature. The 
potential of this integrated approach to improve patient 
outcomes through early and accurate detection is 
significant, underscoring the importance of continued 
research and development in this area. 

 
 

2. Materials and Methods 
 
The Materials and Methods section is structured to 

detail the comprehensive approach taken in utilizing 
ECG data for the detection of PAF through advanced 
DSP techniques and ML models, particularly focusing 
on CWT and CNN. 

The study leveraged the Physionet.org database, 
renowned for its extensive repository of high-quality, 
freely available physiological signals. The MIT-BIH 
Atrial Fibrillation Database is a collection of  
25 long-term ECG recordings of human subjects with 
PAF. It offers a high-resolution temporal depiction of 
cardiac activity and is useful for the automated 
detection of AF and related arrhythmias. The database 
includes rhythm annotation files and beat annotation 
files, providing a foundation for exploring robust 
automated AF detection methods against common 
QRS errors. From this database, 25 PAF and 25 NSR 
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ECG segments of both 1-minute and 5-minute 
durations were extracted. ECG signals are sampled at 
a frequency of 250 samples per second, which provides 
a detailed and accurate representation of the timing of 
cardiac activity. This sampling rate and a 12-bit 
resolution within a ±10 millivolt range enable precise 
examination of the ECG waveforms. These segments 
were specifically chosen to represent a diverse range 
of PAF and Normal Sinus Rhythm (NSR) instances, 
ensuring a dataset comprehensive enough to train and 
validate the ML model effectively [10]. 

The utilization of CWT in MATLAB was 
employed to generate amplitude and phase imaging 
from ECG data, with a focus on classifying PAF and 
NSR. The ECG recordings were preprocessed by 
applying a finite impulse response filter (FIR) with a 
frequency range of 0.01 to 100 Hz to maintain linear 
phase and signal-time domain features. The signals 
were then normalized using a min-max approach. 
Afterwards, this method simplified the use of CWT to 
identify crucial features in both the time and frequency 
domains, which were essential for identifying unique 
patterns associated with PAF. 

The CWT was performed using a complex Morlet 
wavelet, chosen for its excellent ability to balance 
temporal and frequency localization. The analysis 
scales varied from 1 to 100, which is equivalent to the 
maximum available bandwidth of the processed signal. 
This allowed for a thorough breakdown of the 
specified frequency range. 

The red-green-blue (RGB) images were generated 
to display the magnitude and phase of the CWT 
coefficients. These images were generated without 
axes and empty white space, enhancing the visibility of 
the visual patterns in the data. The purpose of this 
amplitude-phase visualization method is to ease the 
comprehension of the varying characteristics of ECG 
signals. Furthermore, it provides a valuable means to 
observe and comprehend the evolving patterns 
associated with PAF, thereby enhancing the precision 
of diagnostic classification models. These images are 
the foundational data for further analysis through deep 
learning techniques [7]. Fig. 1 shows cropped image of 
the PAF segment. 
 

 
 

Fig. 1. Two subplots to visualize the amplitude and phase 
of the Continuous Wavelet Transform (CWT)  

on the dataset. 
 
The CNN architecture was meticulously designed. 

The CNN model was structured to include several 
convolutional layers, pooling layers, and fully 
connected layers, each serving a specific purpose in 
feature extraction and classification. A MATLAB code 
outlines the development and training of the CNN 
designed for binary classification tasks, specifically 

aimed at detecting the presence of PAF from NSR data. 
This network is part of a broader workflow involving 
image preprocessing, data loading, and model training. 
Below is a description of the network and the 
workflow, followed by a flowchart description. 

 
Image Preprocessing 

The preprocessing step involves resizing images 
stored in a specified directory to a uniform dimension 
of 1024×1024 pixels using the bilinear resampling 
filter. This uniformity is crucial for ensuring consistent 
input sizes for the CNN model. The resized images are 
then saved to an output folder for subsequent 
processing. 

 
Data loading and preparation 

The data loading function retrieves images from 
the output folder, converting them into a 3-array 
format suitable for model input. It also assigns binary 
labels based on the presence of specific substrings in 
the filenames, indicative of the class to which each 
image belongs. The dataset is randomized and 
partitioned into training, validation, and testing sets 
with respective ratios, ensuring a comprehensive 
evaluation framework. Additionally, the pixel values 
of the RGB image data are normalized to the range  
[0, 255] to facilitate model convergence  
during training. 

 
CNN Architecture 

The CNN model is constructed using TensorFlow's 
Keras API, comprising an input layer tailored for 
1024×1024 RGB images, followed by a series of 
convolutional and max-pooling layers. These layers 
are designed to extract and down-sample features from 
the input images progressively. The network 
architecture has convolutional layers with 32, 64, and 
128 filters, and then max-pooling layers that reduce the 
spatial dimensions of the feature maps. This makes the 
computations simpler and lowers the risk of 
overfitting. Following the convolutional base, the 
network transitions to a flattening layer, converting the 
2D feature maps into a 1D feature vector. This vector 
feeds into a sequence of densely connected layers (or 
fully connected layers), culminating in a binary 
classification output layer with a sigmoid activation 
function. The model employs the Adam optimizer and 
binary cross-entropy loss function, which are 
appropriate for binary classification tasks. 

 
Training Process 

The model undergoes training over a maximum 
range of 60 epochs using the prepared training dataset. 
The accuracy metric monitors the effectiveness of the 
training process and provides insights into the model's 
performance across epochs. 

 
Flowchart Description 

1. Image Preprocessing: 
o Resize images to 1024x1024 pixels; 
o Save resized images to the output folder. 
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2. Data Loading: 
o Convert amplitude and phase arrays of 

CWT into RGB images; 
o Assign binary labels based on classification 

requirements; 
o Normalize pixel values. 

3. Data Partitioning: 
o Randomize the dataset; 
o Split into training, validation, and  

testing sets. 
4. Model Construction: 

o Input layer for 1024x1024 RGB images; 
o Convolutional and max-pooling layers; 
o Flattening layer to convert 2D feature 

maps to 1D vectors; 
o Dense layers for classification; 
o Binary output layer with sigmoid 

activation. 
5. Model Training: 

o Train the model over 32 epochs; 
o Monitor training accuracy. 

The model training involved feeding the magnitude 
and phase images produced by CWT into the CNN. A 
dataset split strategy was employed, typically 
allocating 70 % of the data for training and 10 % for 
validation, and 20 % for testing purposes. This split 
ensured a robust training process while leaving an 
adequate portion of data for model validation. 
Additionally, techniques such as data augmentation, 
regularization, and dropout were applied to prevent 
overfitting and improve the model's generalization 
capability. 

Validation of the CNN model's performance was 
conducted using the reserved segment of the dataset. 
Key performance metrics, including accuracy, 
sensitivity, specificity, and F1 score, and others were 
calculated to assess the model's effectiveness in 
correctly identifying PAF instances from NSR [11]. 
This step was critical in determining the model's 
clinical applicability and reliability in real-world 
scenarios. 
 
 
3. Results and Discussion 
 

The model achieved an overall 94 % accuracy rate 
after training with a split of 70 % for training, 10 % for 
validation, and 20 % for testing. The algorithm has an 
early stopping condition satisfied when 100 % training 
accuracy is obtained and maintained for at least three 
consecutive epochs to prevent overfitting. Various 
metrics are used to study the model's performance [11]. 
The model achieved an overall accuracy across all 
classes of 94 % of predictions being correct. This high 
accuracy indicates the model is generally reliable 
across various situations. The overall error rate across 
all classes of 6 % suggests that the model's predictions 
are incorrect. This complements the overall accuracy 
and is relatively low. Recall, or sensitivity, measures 
the proportion of actual positives correctly identified. 
A recall of 96 % indicates the model is highly effective 
at catching the relevant cases. With 92 % specificity, 

the model is very good at avoiding false alarms. A 
precision of 92.31 % shows the model's high reliability 
in its positive predictions. A false-positive rate of 8 % 
is relatively low but important in contexts where false 
alarms are costly. The F1 Score is the harmonic mean 
of precision and recall, providing a balance between 
the two in situations where one may be more important 
than the other. An F1 score of 94.12 % is excellent, 
indicating a strong balance between precision and 
recall. A very high MCC of 0.8807 indicates a strong 
correlation between the model's predictions and the 
actual classifications. Cohen's Kappa of 0.88 indicates 
almost perfect agreement beyond chance, suggesting 
the model's predictions align closely with the expected 
outcomes. Overall, the model shows excellent 
performance across various metrics, indicating it is 
highly effective in its classifications, with a strong 
balance between recognizing positive cases (high 
recall) and accurately identifying negative cases (high 
specificity). The low error rates and high MCC and 
Kappa scores underline the model's reliability and 
consistency in prediction accuracy. However, 
depending on the application, even a small number of 
false positives or negatives could be critical, so these 
areas may still require attention. 

This high accuracy demonstrates the effectiveness 
of combining CWT for signal processing and CNN for 
classification. The study discusses the potential of this 
methodology to improve PAF detection and suggests 
future research directions, including expanding the 
dataset for further accuracy improvements. This 
method for predicting AF uses simple, clear ECG 
parsing algorithms along with complex wavelet 
analysis using CNN networks that were specially made 
for this purpose. It stands in comparison with other 
techniques that assess current AF and predict its future 
occurrences. Even though there have been 
improvements in measuring AF that make them more 
sensitive and specific, handheld devices are still not 
very good at catching PAF [1]. On the other hand, 
using machine learning models to combine 
demographic data, simple clinical assessments, and 
plasma biomarkers can give more in-depth information 
about diseases, but it is not as sensitive or specific as 
direct methods. Moreover, more refined 
electrophysiological strategies are under development, 
utilizing machine learning to analyze historical clinical 
ECG data or databases [12-13]. There is a wide range 
of specificity and sensitivity (82 % – 93 %) for these 
methods, which look for atrial premature beats and 
other ECG abnormalities or intervals of atrial or 
ventricular depolarizations [1]. However, they need 
longer recording times. Given the intricate nature of 
Paroxysmal Atrial Fibrillation (PAF) and the sporadic 
approach to monitoring, there is a possibility that 
certain individuals categorized as controls might have 
had undetected occurrences of PAF [14]. While all 
confirmed cases experienced at least one PAF episode 
within the study duration, it's conceivable that some 
controls underwent PAF episodes at more extended 
intervals. If there is too much noise, electrical 
disturbances from outside sources, like 
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electromyographic activity coming from a participant, 
could change the ECG signal and make the results less 
accurate. The pilot nature of this study constrained the 
inclusion of real patients at this stage to fine-tune the 
algorithm and ensure robust results.  Nonetheless, 
ventricular arrhythmias or waveform irregularities like 
bigeminy or T-wave alterations could introduce 
confounding variables, leading to false positives [14]. 
Within the scope of this study, clinical assessment 
excluded such anomalous traces; however, this falls 
short of the mark for a wholly autonomous procedure. 
Anticipation is set on the subsequent phase to integrate 
an initial ECG segmentation step, perhaps employing 
an ECG segmentation algorithm complemented by 
autocorrelation analysis, reconstructed phase space, 
bispectrum and biocoherence to sieve out traces 
bearing these potential confounders at further stages, 
which could enhance the results [15-18]. 

 
 

4. Conclusions 
 

The study successfully created an automated 
classification system using ECG signals to 
differentiate between PAF and NSR, achieving a high 
accuracy rate. This demonstrates the viability of 
combining DSP and ML techniques for medical 
diagnostics, offering promising directions for future 
research and potential clinical applications. 
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Summary: This study explores the impact of denoising strategies on classifying first-episode psychosis (FEP) patients from 
healthy controls using functional connectivity measures derived from fMRI data. Leveraging a dataset of 100 FEP patients and 
90 healthy controls, the research evaluates how different preprocessing approaches—ranging from raw data to moderate and 
stringent denoising – affect the classification accuracy when applying logistic regression on dimension-reduced features via 
PCA. The findings reveal that both moderate and stringent denoising methods significantly enhance classification performance 
compared to using raw data, with moderate denoising reaching an 82 % accuracy with 24 principal components and stringent 
denoising achieving 81 % accuracy with 45 components. The study underscores the importance of denoising in improving the 
reliability of functional connectivity measures for schizophrenia classification. However, it also suggests that the choice 
between moderate and stringent denoising may not be critical, as combining multiple strategies did not substantially improve 
performance. This research highlights the potential of optimized fMRI data preprocessing in psychiatric diagnosis, providing 
insights into the neurodevelopmental and neurodegenerative processes underlying schizophrenia. 
 
Keywords: Functional connectivity, Schizophrenia, fMRI, Classification, Denoising. 
 

 
1. Introduction 
 
1.1. Motivation 
 

Although a neurodevelopmental hypothesis for 
schizophrenia complemented by neurodegenerative 
processes is well established, the link between these 
processes and the specific brain dysfunction 
underlying schizophrenia psychopathology is not clear 
[1]. However, in general schizophrenia is widely 
conceptualized as a disconnection disease, i.e. 
affecting and stemming from abnormal connectivity, 
although concurrent changes in other anatomical 
features such as decreased gray matter thickness are 
commonly observed. Indeed, various changes of brain 
connectivity have been reported. Apart from 
distributed changes of white matter integrity [2] 
affecting the structural substrate of brain connectivity, 
the reported effects include quite prominent changes in 
so called functional connectivity – the statistical 
dependence between the activity of remote brain 
regions. Changes in functional connectivity have thus 
been widely used as bio-markers for construction of 
classifiers distinguishing healthy subjects from 
patients with schizophrenia. 

1.2. Key Challenges and State-of-art 
 

However, it is far from understood how to 
optimally select functional connectivity descriptors, as 
well as to build a classifier, to obtain optimal 
performance. Apart from standard approaches such as 
applying logistic regression or linear Support Vector 
Machines (SVM) directly to the functional 
connectivity indices, a range of studies aims to 
improve the performance by either applying advanced 
machine learning approaches such as deep networks 
[3], or using sophisticated Persistent Homology 
features based on the Topological Data Analysis 
approaches [4]. However, despite the theoretical 
promises, robust and substantial improvements by 
these approaches have not yet been established, with 
the added value of many of these advanced tools being 
in the current data situation at most incremental,  
if any [3]. 

This might be attributed to the high levels of noise 
in functional magnetic resonance imaging (fMRI) data. 
Importantly, the noise is typically a structured noise 
that might potentially confound the results, such as the 
increased amount of head motion under some 
conditions [5], leading to systematic bias in the 
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functional connectivity matrices towards atypical 
multivariate functional connectivity patterns [6]. 
Another contributing factor is of course the problem of 
relatively small sample sizes (in terms of number of 
subjects), compared to relatively high number of 
features, typically available in neuroimaging  
studies [7]. 

 
 

1.3. Current Study Plan 
 

In the current study, we use a comparably large 
dataset of first episode of psychosis data (100 patients 
and 90 healthy controls with MRI data acquired with 
the same procedures) to study the effect of choice of 
denoising strategies on the performance of 
classification. Functional connectivity is in line with 
the literature quantified by Pearson's correlation 
coefficient [8]. Given the relatively modest sample 
size, we use robust dimension reduction method, i.e. 
principal component analysis (PCA) and classical 
classifier choice (logistic regression), a combination 
that has been previously shown to perform on par with 
more sophisticated tools in this particular  
context [9, 10]. 

 
 

2. Data and Methods 
 
2.1. Study Overview and Samples 
 

In total, 190 subjects participated in the study;  
100 First episode psychosis (FEP) patients (mean age 
= 28.75, SD = 6.83, 42 females/58 males) and  
90 healthy volunteers serving as controls (mean  
age = 27.81, SD = 6.82, 50 females/40 males). There 
were no significant differences between the patient and 
control samples in age and sex. In the patient group, at 
the time of the MRI scan, the average duration of 
untreated psychosis was 3.23 months (S.D. = 4.82), 
and the average duration of antipsychotic treatment 
was 2.29 months (S.D. = 4.58). The study design was 
approved by the local Ethics Committee of the Institute 
of Clinical and Experimental Medicine and the 
Psychiatric Center Prague. All subjects provided 
written informed consent after receiving a complete 
description of the study. 

The FEP patients were diagnosed according to 
ICD-10 criteria and structured MINI International 
Neuropsychiatric Interview. FEP subjects were 
investigated during their first hospitalization and were 
considered as FEP if they fulfilled these criteria: a) first 
hospitalization for schizophrenia, and b) clinical 
interview identified first psychotic and/or prodromal 
symptoms of psychosis not earlier than 24 months ago 
(mean = 5.90 months, SD = 6.16). 

The resting fMRI was performed at the initial stage 
of second-generation antipsychotic therapy (mean  
10 weeks of medication at the time of resting state 
fMRI. Ninety healthy control subjects (HC) were 
recruited via a local advertisement; they had a similar 
socio-demographic background as the FEP to whom 
they were matched by age and sex. 

The healthy controls had a slightly higher number 
of years of education than the FEP (15.64, SD = 3.34 
and 13.48, SD = 2.28, t = 4.466, p < 0.001). Healthy 
controls were evaluated with MINI and were excluded 
if they had a lifetime history of any psychiatric 
disorder or a family history of psychotic disorders. 
Other exclusion criteria for both groups included a 
history of seizures or significant head trauma, mental 
retardation, a history of substance dependence, and any 
MRI contraindications. The protocol was approved by 
the institutional review boards of the National Institute 
on Mental Health, Klecany. Written informed consent 
was obtained from all participants. 
 
 
2.2. fMRI Data Acquisition 
 

Scanning was performed with a 3T MRI scanner 
(Siemens Magnetom Trio) located at the Institute of 
Clinical and Experimental Medicine in Prague, Czech 
Republic. Functional images were obtained using  
T2-weighted echo-planar imaging (EPI) with blood 
oxygenation level-dependent (BOLD) contrast using 
SENSE imaging. GE-EPIs (TR/TE = 2000/30 ms, flip 
angle = 70°) consisted of 35 axial slices acquired 
continuously in sequential decreasing order covering 
the entire cerebrum (voxel size = 3×3×3 mm, slice 
dimensions 48x64 voxels). The next 400 functional 
volumes were used for the analysis. A three-
dimensional high-resolution MPRAGE T1-weighted 
image (TR/TE = 2300/4.63 ms, flip angle 10°, voxel 
size = 1×1×1 mm) covering the entire brain was 
acquired at the beginning of the scanning session and 
used for anatomical reference. 
 
 
2.3. Data Preprocessing, Brain Parcellation  
       and FC Analysis 
 

Functional MRI is a neuroimaging method that is 
based on measuring blood oxygen level-dependent 
signal. One of the typical features of the fMRI data is 
the noise which is present in the raw BOLD signal 
[11]. The presence of noise in the fMRI data 
significantly limits the reliability of functional 
connectivity measures [12]. Typical artifacts, such as 
subject movements, arterial pulsation, respiration, and 
also hardware of the MRI scanner itself, induce  
non-neural temporal correlations in the BOLD, and 
relatively sophisticated data preprocessing is thus 
warranted to obtain maximize the level to which the 
functional connectivity estimates reflect the 
underlying neuronal dynamics. 

The resting state fMRI data were corrected for head 
movement (realignment and regression) and registered 
to MNI standard stereotactic space (Montreal 
Neurological Institute, MNI) with a voxel size of 
2×2×2 mm by a 12 parameter affine transform 
maximizing normalized correlation with a customized 
EPI template image. This was followed by 
segmentation of the anatomical images in order to 
create subject-specific white-matter and CSF masks. 
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The resulting anatomical images and masks were 
spatially normalized to a standard stereotactic MNI 
space with a voxel size of 2×2×2 mm. 

The denoising steps included regression of six 
head-motion parameters (acquired while performing 
the correction of head-motion) with their first-order 
temporal derivatives and five principal components of 
white matter and cerebrospinal fluid. The CONN 
toolbox has implemented a component-based noise 
correction method (CompCor) that in the default 
setting performs PCA dimensionality reduction of 
white matter and cerebrospinal fluid time series 
derived from particular regions [13]. The CompCor 
method uses noise regions of interest (ROIs) acquired 
while segmenting each subject’s high-resolution 
anatomical images. Time series from defined regions 
of interest were additionally linearly detrended in order 
to remove possible signal drift and finally filtered by a 
band-pass filter with cutoff frequencies 0.004 – 0.1 Hz. 
We shall refer to this preprocessing setup as the 
stringent denoising scheme. 

As an alternative denoising pipeline, closer to the 
practice in some studies, we used a more moderate 
denoising scheme in which we used six head-motion 
parameters without their first-order derivatives and 
only the mean time-series of white-matter and 
cerebrospinal fluid (instead of the 5 PCA components 
for each compartment as in default CompCor pipeline 
described above). This alternative denoising pipeline 
was performed without explicit linear detrending, 
however time series were also finally filtered by a 
band-pass filter with cutoff frequencies 0.004 – 0.1 Hz. 
As a benchmark, we also used data without the 
denoising steps described for the stringent or moderate 
scheme; this dataset version is further denoted as raw 
(albeit they naturally include the basic steps of motion 
correction and normalization to MNI template to allow 
meaningful extraction of region-based average 
activation time series). 
 
 
2.4. Analysis 
 

The functional connectivity analysis was carried 
out using the CONN toolbox (Gabrieli Lab. McGovern 
Institute for Brain Research Massachusetts Institute of 
Technology, USA; www.nitrc.org/projects/conn). 
CONN is a complex Matlab-based toolbox for the 
analysis of functional connectivity in resting-state or 
task-based fMRI data [14]. The toolbox uses standard 
SPM (Wellcome Department of Imaging 
Neuroscience, London, UK; www.fil.ion.ucl.ac.uk/ 
spm) modules for data preprocessing. 

The regional mean time series were estimated by 
averaging voxel time series within each of the 90 brain 
regions (excluding the cerebellar regions) comprising 
the Automated Anatomical Labeling (AAL) atlas [15]. 
To quantify the whole-brain pattern of functional 
connectivity, we performed a ROI-to-ROI connectivity 
analysis by computing, for each subject, the Pearson’s 
correlation matrix among the regional mean  
time series. 

The classification tasks were carried out in the 
MATLAB environment. For classification of healthy 
vs patients, we used logistic regression, applied to 
dimension reduced features of each of the three 
datasets (obtained by the raw, moderate, or stringent 
denoising). The dimension reduction was carried out 
by applying principal component analysis to the  
4005 functional connectivity features. To avoid 
overfitting, the performance was evaluated in a leave-
one-out evaluation scheme. The optimal threshold was 
selected within each fold using the Youden's J statistic. 
To map the effect of strictness of dimension reduction, 
we varied the number of principal components 
extracted and used for the analysis between 1 and 190. 
 
 
3. Results 
 

The results of the classifier on the three types of 
data preprocessing differed substantially, see Fig. 1 for 
visualization of the results. In particular, for the raw 
data, the maximum accuracy reached was 74 %, 
achieved for using 44 principal components, and then 
gradually decreasing due to overfitting with too many 
input features. Similar overall picture was observed for 
the moderate denoising, however the accuracy reached 
was 82 %, achieved already for using 24 principal 
components. Finally, for the stringent denoising, the 
accuracy reached was 81 %, achieved for using  
45 principal components. Notably the results were 
relatively robust with respect to choose of number of 
components. Combining data from multiple denoising 
strategies achieved performance comparable with that 
of the well-performing moderate or  
stringent strategies. 
 

 
 

Fig. 1. Accuracy of classification of first episode psychosis 
patients versus healthy controls from resting state functional 
magnetic resonance imaging functional connectivity features 
using logistic regression, as a function of dimension 
reduction (number of PCA components) and preprocessing 
option. For visualization purposes only the results  
for the range of principal components of 1 to 60 are shown; 
the accuracy gradually decreased for even larger component 
count due to natural overfitting. 

 
 

4. Discussion and Conclusions 
 

Most of the applied settings provided clearly above 
chance performance in the classification task, however 
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the performance depended crucially on the analysis 
options. Interestingly, even the raw, minimally 
preprocessed data provided non-negligible 
classification performance. However, both evaluated 
standard processing approaches provided about ten 
percent improvement in accuracy. 

Surprisingly, both the moderate and stringent 
denoising strategies obtained comparable 
performance, despite substantial change in the mean 
difference between the groups (results not shown). Our 
analysis has thus shown, that denoising has a beneficial 
effect on the performance of classification of 
schizophrenia from functional connectivity, while the 
selection among suitable strategies may not be  
so crucial. 

A key role was played by the number of principle 
components of the functional connectivity feature set 
that were used in the classification. Despite some 
dimension reduction of the original 4005 features 
proved clearly beneficial, unlike to our previous study 
[10] in multiple sclerosis, reduction to very small 
number of components (below 10) was not 
competitive. 

Finally, perhaps unfortunately, combining data 
with multiple denoising strategies did not substantially 
help the classification performance, yielding yet 
another unsuccessful attempt at substantially 
improving the classification of schizophrenia patients 
from healthy controls using resting state functional 
magnetic resonance imaging functional connectivity 
features. 
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Summary: Neurophysiological data are characterized by a high degree of nonstationary processes with varying time-
frequency features. The data tools resulting from the concept of nonlinear dynamics, such as approximate entropy, proved to 
be predictive of subsequent clinical changes. This rate of information production describes the randomness or instability of a 
dynamical system. The statistical parameter of approximate entropy could be used to quantify regularity and predictability and 
assess the complexity of the analyzed biosignals. On the basis of correctly chosen parameters, the approximate entropy could 
serve as a reliable quantitative biomarker underlying the appropriate neurodynamics. In this study, we characterize the 
alterations of this nonlinear tool to characterize changes in the brain dynamics. The level of alterations in EEG signal 
complexity is a sensitive tool to distinguish pathological brain changes, with a prognostic and diagnostic value for different 
neuropsychiatric diseases. 
 
Keywords: Approximate entropy, Signal complexity, Neurophysiology, EEG, Quantitative biomarker. 
 
 
1. Introduction 
 

Complex neurophysiological signals, such as EEG, 
have been studied using various linear and non-linear 
tools [1-3]. In fact, brain activity is considered to be a 
highly complex, non-linear, and mostly irregular 
system. Adult heathy subjects are characterized by 
rather higher levels of neurophysiological dynamics. It 
becomes more ordered during deep sleep, rigid 
thinking, under deep anesthesia, or during certain 
neurophysiatric disorders [3, 4]. The less ordered 
neurodynamic is typical for imaginations, REM sleep, 
early psychosis, or during psychedelic states [5]. 
Conventional linear statistics cannot analyze the 
dynamics of complex physiological signals. The 
hidden dynamical changes are often undetected by 
classical time-series EEG analyses. To better 
understand the implications of the variability present 
in physiological signals, it is important to use nonlinear 
tools, in addition to conventional linear  
approaches [3, 5]. 

Approximate entropy (ApEn), an algorithm 
derived from Kolmogorov-Sinai entropy, is a measure 
of long-term trends in neurophysiological time series, 
which increases when those long-term trends are 
disrupted [6]. Increasing this parameter means 
unpredictability and random behavior (Fig. 1). On the 
other hand, the presence of repetitive patterns in EEG 
time series results in more predictable (hence less 
complex) behavior. Therefore, ApEn alterations could 
be shown to be a reliable quantitative biomarker and 
provide useful information on the development of 
specific neuropsychiatric diseases and related 
therapeutic progress. 

 
2. The concept of Approximate Entropy 

 
The value of ApEn provides the capability to present 
quantitative information about the complexity of the 

EEG signal that exhibits a combination of 
deterministic and stochastic behaviors. Lower ApEn 
values are associated with a higher degree of regularity 
and predictability and reflect a more ordered system or 
a lower system complexity. High values of ApEn 
reflect the high disorder and irregularity. 
The calculation of ApEn requires the specification of 
two unknown parameters – m, the embedding 
dimension, which determines the length of the 
sequences to be compared, and r, a tolerance threshold 
to accept similar patterns between two segments. The 
value of m can be estimated using the first minimum 
value of the non-linear correlation function called 
average mutual information and subsequent use of the 
false nearest neighbor approach. Properly assessed 
parameter r could work as an additive noise removal 
filter. The approximate entropy suggested for clinical 
use demonstrates that r should fall within the interval 
of 0.1 to 0.25 times the standard deviation of the signal 
and that m should be 1 or 2 for data length (N) ranging 
from 100 to 5000 data points. 
 
2.1. Calculation of Approximate Entropy 
 

If there is a data time series x(n) = x(1), 
x(2),...,x(N), where N is a number of data samples, the 
algorithm for calculating the ApEn should start with 
assessment of the standard deviation of analyzed signal 
(SDx), the embedding dimension and the  
threshold level. 

 

 2

1 1

1 1[ ( ) ( )]
1

N N

x
n n

SD x n x n
N N= =

= −
− ∑ ∑  (1) 

 
1. The first step is to estimate vectors X(i) defined 
 

 ( ) [ ( ), ( 1),..., ( 1)],X i x i x i x i m= + + −  (2) 
for i = 1, N-m+1. 
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Fig. 1. Regularity and predictability of signals. Low ApEn value (0.00005) of a perfectly regulated signal (A) compared  
to the increase in ApEn value of the EEG signal (B; 0.4332) and a random signal (C; 0.6849). 

 
 
2. The difference between X(i) and X(j), 

d[X(i),X(j)] is estimated as a maximum absolute 
difference between their related scalar components 

 

 
0, 1

[ ( ), ( )]
max [ ( ) ( ) ]k m

d X i X j
x i k x j k r= −

=

= + − + ≤
 (3) 

 
3. For a given X(i), the number of differences 

d[X(i),X(j)], for j = 1, N-m+1 that is smaller or equal 
than the threshold r and the ratio of this number to the 
total number of m-vectors (N-m+1) must be assessed. 
If ( )m

rN i  is number of 
 

 d[X(i), X(j)] r≤ , (4) 
 

then 
 

  (5) 

This step is repeated for any given i, where  
i = 1,…,N-m+1. 

4. Averaged value of ( )m
rC i  natural logarithm is 

calculated 
 

 
1
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5. Embedding dimension is increased to m+1 and 

all previous steps are repeated. The value of ( )m
rC i and 

m 1( )r+Φ  is estimated. 
6. According to described algorithm, parameter 

approximate entropy (ApEn) is theoretically defined as 
a function of the embedding dimension m and a 
threshold r. 
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7. Practically, parameter ApEn is expressed as 
 

 1( , , ) [ ( ) ( )]m mApEn m r N r r+= Φ − Φ  (8) 
 
As stated above, ApEn measures the likelihood that 

vectors that are close enough within r for m 
observations remain close within the same tolerance of 
r when m is increased. 

 
 

3. ApEn as a Quantitative Biomarker 
 

Due to the advantages of ApEn algorithm, such as 
the possibility to be applied to EEG signals of shorter 
length and being almost unaffected by noise, it has 
been effectively used to quantify the degree of the 
disorder of analyzed system and has proved to be very 
sensitive metrics to characterize specific diseases. 
Moreover, ApEn is highly resistant to short strong 
transients and outliers. 

ApEn detects the appearance of episodic behavior 
that is often not present in peak amplitudes. Therefore, 
this algorithm is often considered to reflect the level of 
new generation of EEG signal patterns. Chaos-time 
variations in the stability production of healthy 
biological systems represent the ability of organisms to 
adapt to the environment and achieve homeostasis. 

This variability in the level of complexity of the 
brain corresponds to the processes alternated with 
different pathophysiological / physiological stages 
(Table 1). 

Major depressive disorder has been described as a 
dynamical disease that manifests itself through 
behavior symptoms, mainly the persistently reduced 
mood and loss of normal interests. This prevalent 
disease is characterized by a decrease in the 
complexity of the brain and higher predictability and 
regularity of EEGs compared to healthy subjects [7, 8]. 
This comparison also confirms the concept of  
right-hemisphere disorganization and the abnormal 
activity in the prefrontal cortex [7, 9]. 

Schizophrenia is a persistent and severe psychiatric 
disorder, manifesting itself as disturbances in 
cognition, affects, and perceptions. Usually, it is 
diagnosed by qualitative criteria. The complexity 
measures underlying this disease depend on different 
factors, like the disease development, treatment, and 
the clinical status or symptom severity, mainly the 
balance between positive and negative qualitative 
criteria. According to Taghavi et al., 2011, extracted 
complexity values for normal subjects were 
significantly higher than that of schizophrenic patients, 
especially in the limbic area of the brain [10]. Other 
authors also reported reduced EEG complexity in 
patients suffering from this disease [11]. 

However, recent findings reported an increase in 
ApEn values in schizophrenia patients compared to 
healthy subjects [12]. Increased neural complexity has 
been found to be a typical sign in patients suffering 
from schizophrenia with a more recent onset of the 
disease, premedicated, and with more positive 
symptoms [13]. 

Variations in neurophysiological complexity were 
also reported for different neurodevelopmental stages. 
EEG complexity in autistic spectrum disorder showed 
a lower complexity assessment. For example, children 
with attention deficit hyperactivity disorder have lower 
EEG entropy in rest compared to healthy subjects  
[14, 15]. ApEn of EEG in adolescents with attention 
deficit / hyperactivity disorder was also reported to 
manifest lower values than controls during a cognitive 
task, especially in the right frontal region [16]. 
 
 
Table 1. Alteration of approximate entropy during different 
neuropsychiatric conditions compared to healthy controls. 

 
Neuro-

psychiatric 
condition  

Disease ApEn  References 

Mood and 
Anxiety 

Major 
depressive 
disorder 

  Pezard, et al.,1996 
Faust, et al,, 2014 

Schizophrenia, 
Psychosis 

Schizophrenia 
(based on 

clinical status or 
symptom 
severity) 

 
Taghavi, et al., 2011 

Akar, et al. 2016 
Leei, et al., 2008 

Thilakvathi, et al., 
2017 

Neurodevel. 
disease 

Attention 
deficit 

hyperactivity 
disorder 

 
Chen, et al., 2019 
Khoshnoud, et al., 

2018 
Sohn, et al., 2010 

 
 
4. Conclusions 
 

In the clinical context, early diagnosis and 
appropriate treatment are crucial to prevent disease 
progression. The measure of ApEn could serve as an 
effective quantitative biomarker with prognostic and 
diagnostic value to monitor the impact of 
pharmacological and rehabilitation treatments. 
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Summary: This study introduces a novel approach leveraging an RGB sensor-based detector to monitor the technical condition 
of motor oil in real-time. The detector, designed to analyze the red, green, and blue spectral ranges, offers a cost-effective and 
simplified alternative for detecting wear particles in the motor oil. Utilizing Wavelet Transform for data analysis, the study 
demonstrates the detector’s capability to reduce data complexity and enhance the precision of wear particle detection. The 
processed RGB data feeds into a Neural Network and Fuzzy Logic system, further analyzing the concentration of wear particles 
and providing a qualitative assessment of the oil’s condition. Our findings indicate that the RGB sensor-based approach is not 
only viable but also advantageous in terms of cost, efficiency, and potential integration into onboard diagnostic systems for 
continuous diesel engine monitoring. The study’s implications for predictive maintenance strategies could significantly impact 
the locomotive industry by improving the reliability and longevity of locomotive diesel engines. 
 
Keywords: Detector, RGB sensor, Wavelet transform, Spectral ranges, Motor oil, Technical condition, Locomotive  
diesel engines. 
 
 
1. Introduction 

 
The relentless pursuit of operational efficiency and 

sustainability within the locomotive industry 
underscores the need for innovative diagnostic tools 
that can accurately assess the technical condition of 
locomotive diesel engines [1]. A pivotal component of 
engine maintenance is monitoring the condition of 
motor oil, as it plays a crucial role in the engine’s 
performance and longevity [2]. Traditional methods 
for analyzing motor oil [3, 4], such as spectrographs 
and photometric instruments, while effective, often 
require stationary conditions, additional equipment, 
reagents, and time, thus limiting their applicability in 
real-time, on-board scenarios [5, 6]. 

This research introduces a novel approach 
leveraging a detector with an RGB sensor to determine 
the technical condition of motor oil in locomotive 
diesel engines. By utilizing red, green, and blue 
spectral ranges data, this method aims to provide a 
cost-effective, efficient, and accurate means of 
assessing wear particles in motor oil, ultimately 
enhancing engine maintenance strategies and 
operational reliability. 

 
 

2. Methods 
 
It is known that every metal has a reflectance in the 

RGB spectrum [3, 5]. Each metal has a unique 
absorption peak within the RGB spectrum, influencing 
the oil’s overall RGB reflectance differently. 

Fig. 1 illustrates how various metals (Al, Na, Fe, 
Mg, Ni, Cr, Cu, Si, Mn, Pb) potentially influence the 
reflectance of red, green, and blue spectral ranges in 
motor oil. 

 
 

Fig. 1. Reflectivity of metals in the RGB spectrum. 
 
 
Fig. 1 provides a visualization of the hypothetical 

impact of each metal on motor oil performance, which 
can be determined using RGB values. This graph can 
be used for diagnostic purposes in detecting and 
identifying engine wear particles through motor  
oil analysis. 

In connection with the above, it is proposed to use 
a detector with an RGB sensor. The developed detector 
with an RGB sensor is designed to obtain RGB data for 
the subsequent determination of wear particles in 
motor oil of locomotive diesel engines. The detector 
consists of an RGB sensor capable of capturing red, 
green, and blue spectral ranges of light reflected from 
or transmitted through a motor oil sample. The design 
focuses on achieving high sensitivity and accuracy in 
differentiating subtle changes in oil coloration, 
attributed to varying concentrations of wear particles. 
A controlled light source illuminates the oil sample, 
ensuring consistent lighting conditions across all 
measurements. 
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The RGB sensor collects spectral data from the 
illuminated motor oil samples. The data acquisition 
system is calibrated to account for any systemic 
variations, ensuring the reliability of the spectral  
data obtained. 

Data from the RGB sensor enters the Neural 
Network. The output of the Neural Network produces 
quantitative values of the concentrations of wear 
particles in the motor oil of locomotive diesel engines. 
The resulting values are fed to the Fuzzy logic block. 
At the Fuzzy logic stage, we obtain a conclusion about 
the technical condition of the motor oil of locomotive 
diesel engines. This finding will indicate the likelihood 
of continued use of the motor oil or the need to change 
the motor oil of locomotive diesel engines. 

RGB data received from an RGB sensor in the first 
version is amenable to Wavelet Transform, with the 
help of which the data is decomposed into a set of 
wavelets. The RGB data undergoes Wavelet 
Transform to reduce data complexity and highlight 
significant features indicative of wear particle 
concentrations. This transformation facilitates a more 
efficient analysis by focusing on critical data elements. 
In the second option, data from the RGB sensor is 
transmitted directly, i.e. without Wavelet Transform. 

This methodological approach is designed to 
monitor the condition of motor oil of locomotive diesel 
engines in real time to improve maintenance efficiency 
and extend engine durability. 

 
 

3. Results 
 
The operating principle of the proposed system for 

determining the technical condition of motor oil in 
locomotive diesel engines is as follows. 

First, testing is carried out on fresh motor oil. Data 
from the RGB sensor is incoming, which is represented 
by input matrices 𝐴𝐴𝑖𝑖𝑖𝑖𝑟𝑟 ,𝐴𝐴𝑖𝑖𝑖𝑖

𝑔𝑔 ,𝐴𝐴𝑖𝑖𝑖𝑖𝑏𝑏  of size m × k. On the 
basis of which a conclusion will be drawn about the 
technical condition of the motor oil by the  
proposed system. 

During engine operation, the motor oil of 
locomotive diesel engines undergoes degradation 
changes, and wear particles also enter the motor oil of 
locomotive diesel engines. RGB sensor measurements 
are taken every 4-8 hours of engine operation. 
Accordingly, data will be received from the RGB 
sensor in the form of matrices 𝐴𝐴𝑛𝑛𝑟𝑟 ,𝐴𝐴𝑛𝑛

𝑔𝑔,𝐴𝐴𝑛𝑛𝑏𝑏  of size m × k, 
where n is the measurement step, n = 1,2,3, … 

Next, the difference between the input and new 
matrix is calculated using the equations: 

 

 ∆𝑛𝑛𝑟𝑟  =  𝐴𝐴𝑖𝑖𝑖𝑖𝑟𝑟 − 𝐴𝐴𝑛𝑛𝑟𝑟 ;  ∆𝑛𝑛
𝑔𝑔 = 

=  𝐴𝐴𝑖𝑖𝑖𝑖
𝑔𝑔 − 𝐴𝐴𝑛𝑛

𝑔𝑔;  ∆𝑛𝑛𝑏𝑏  =  𝐴𝐴𝑖𝑖𝑖𝑖𝑏𝑏 − 𝐴𝐴𝑛𝑛𝑏𝑏  (1) 

 
The result of calculating the difference in the 

distributions of RGB signals for motor oil of 
locomotive diesel engines after operating 214 engine 
hours is presented in Fig. 2. 

This graph (Fig. 2) illustrates the distinct 
differences in the blue spectral range, indicating a high 

concentration of wear particles (Al, Na, Fe) in the 
motor oil of locomotive diesel engines after operating 
214 engine hours. The red and green spectral ranges 
show relatively minor changes, suggesting that these 
colours are less indicative of the technical condition of 
the motor oil of locomotive diesel engines after 
operating 214 engine hours. 

 
 

 
 

Fig. 2. Difference in RGB signal distributions of the motor 
oil of locomotive diesel engines after operating  

for 214 engine hours. 
 

Also, a Wavelet Transform is performed for data 
from the RGB sensor. As a result of the Wavelet 
Transform, sets of wavelets are obtained for the red, 
green, and blue ranges. A set of wavelets is represented 
by input matrices 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑟𝑟 ,𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖

𝑔𝑔 ,𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑏𝑏  of size p × r. 
Graphical representation of the Wavelets 
transformation for RGB spectral ranges in fresh motor 
oil of locomotive diesel engines is shown in Fig. 3. 

Fig. 3 displays the initial wavelet transformation 
results for the red, green, and blue spectral ranges, 
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highlighting the baseline characteristics of fresh motor 
oil of locomotive diesel engines. The transformation 
enables the identification of specific patterns and 

features within each spectral range, which serve as 
reference points for subsequent comparisons with oil 
samples taken after various engine operation periods. 

 
 

 
 

 
 

Fig. 3. Graphical representation of the Wavelets transformation for RGB spectral ranges in fresh motor oil  
of locomotive diesel engines. 

 
 

During engine operation, the motor oil undergoes 
degradation changes, and wear particles also enter the 
motor oil of locomotive diesel engines. RGB sensor 
measurements are taken every 4-8 hours of locomotive 
diesel engines operation. The result is the following set 
of wavelets for the red, green, and blue spectral ranges. 
The set of wavelets for each new dimension is 
represented by matrices 𝐴𝐴𝐴𝐴𝑛𝑛𝑟𝑟 ,𝐴𝐴𝐴𝐴𝑛𝑛

𝑔𝑔,𝐴𝐴𝐴𝐴𝑛𝑛𝑏𝑏 , size p × r. 
Next, the difference ∆𝑎𝑎𝑎𝑎𝑟𝑟 , ∆𝑎𝑎𝑎𝑎

𝑔𝑔 , ∆𝑎𝑎𝑎𝑎𝑏𝑏  of the input and new 
matrices is calculated similarly to equations (1). 

The result of calculating the difference of the 
Wavelet Transform for RGB spectral ranges of the 
motor oil of locomotive diesel engines after operating 
214 engine hours is presented in Fig. 4. 

Fig. 4 illustrates the significant changes in the 
Wavelet Transform outputs across the red, green, and 
blue spectral ranges, compared to the baseline 
established with fresh motor oil of locomotive diesel. 
The variations captured here underscore the presence 
of wear particles and the degradation of oil quality over 
time. The graphical representation effectively 
demonstrates the increased sensitivity and specificity 
of the Wavelet Transform in detecting subtle changes 
in the motor oil’s condition. 

The data in Fig. 4 (green and blue spectral ranges) 
indicate an increased concentration of wear particles in 

the motor oil of locomotive diesel engines after 
operating 214 engine hours of such metals as: Al, Na, 
Fe, Mg, Ni, Cr, and Cu. Red spectral range also 
indicates the presence of Si, Mn, Pb. The 
concentrations of these metals in motor oil can be 
determined through laboratory research. 

The resulting differences between the data sets ∆𝑛𝑛𝑟𝑟 , 
∆𝑛𝑛
𝑔𝑔, ∆𝑛𝑛𝑏𝑏 , ∆𝑎𝑎𝑎𝑎𝑟𝑟 , ∆𝑎𝑎𝑎𝑎

𝑔𝑔 , ∆𝑎𝑎𝑎𝑎𝑏𝑏  are fed to the input of the Neural 
Network. 

Every Neural Network has a training layer. To train 
the Neural Network, spectral studies of motor oil of 
locomotive diesel engines are carried out in laboratory 
conditions. Motor oil samples are collected from 
locomotive diesel engines at various stages of 
operation, ranging from fresh oil to oil that has been in 
use for extended periods. These samples represent a 
spectrum of technical conditions, from optimal to 
significantly degraded. 

The system’s accuracy and reliability will be 
validated through comparative analysis with 
traditional oil analysis methods. This involves  
cross-referencing the detector’s assessments with 
results obtained from spectrographic and photometric 
analyses conducted under laboratory conditions. 
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Fig. 4. Difference in Wavelet Transform outputs for RGB 
spectral ranges of the motor oil of locomotive diesel 

engines after operating 214 engine hours. 
 
 
At the corresponding engine operating time, the 

quantitative values of the concentrations of wear 
particles in the motor oil of locomotive diesel engines 
are compared and assigned to the data sets ∆𝑛𝑛𝑟𝑟 , ∆𝑛𝑛

𝑔𝑔, ∆𝑛𝑛𝑏𝑏 , 
∆𝑎𝑎𝑎𝑎𝑟𝑟 , ∆𝑎𝑎𝑎𝑎

𝑔𝑔 , ∆𝑎𝑎𝑎𝑎𝑏𝑏 . As a result of training the Neural 
Network, at its output we obtain a quantitative result of 
the concentrations of wear particles in the motor oil of 
locomotive diesel engines for a certain time of  
engine operation. 

As a result of the work of Neural Networks, the 
output contains two data arrays of wear product 
concentrations in motor oil of locomotive diesel 
engines for a certain engine operating time. Next, a 
comparison of these two arrays is performed. If the 
difference in these data does not exceed 15 %, then a 
conclusion will be made about the advisability of using 
only that part of the system in which the Wavelet 
transform is used. This will reduce the computational 

energy at each stage of the system’s operation to 
determine the technical condition of the motor oil of 
locomotive diesel engines. 

The proposed Neural Network architecture is  
as follows: 

- Input Layer. Input Size: 3 neurons, corresponding 
to the RGB data obtained from the sensor. Each neuron 
represents the intensity of red, green, and blue spectral 
ranges from or transmitted through the motor oil 
sample. 

- Hidden Layers. To capture the complex 
relationships between RGB values and wear product 
concentrations, the network should have multiple 
hidden layers: Layer 1: 64 neurons, using ReLU 
activation for non-linear processing; Layer 2:  
32 neurons, also with ReLU activation. This layer 
further processes the information to help identify 
patterns specific to different wear particles. 
Optionally, additional layers or adjustments to the 
number of neurons could be explored based on the 
complexity of the data and the required accuracy. 

- Output Layer. Output Size: Depending on the 
approach, this could be a single neuron if the goal is to 
predict a single concentration value of wear particles 
or multiple neurons if predicting concentrations of 
multiple types of wear particles separately. 

Activation Function: for classification (e.g., low, 
medium, high concentration levels), a SoftMax 
activation function might be more appropriate. 

Training the Neural Network. Dataset: A collection 
of RGB data from motor oil samples with known 
concentrations of wear particles. This dataset is used to 
train and validate the model. Preprocessing: Normalize 
the RGB values to a 0-1 range to facilitate training. If 
predicting specific concentrations, ensure the target 
values are scaled appropriately. 

Loss Function and Optimizer. For classification, 
categorical cross entropy might be more suitable. An 
optimizer like SGD (Stochastic Gradient Descent) can 
be used to minimize the loss function during training. 

Training Process. Divide the dataset into training, 
validation, and test sets. Train the model using the 
training set, while monitoring its performance on the 
validation set to prevent overfitting. Adjust the 
model’s architecture, number of epochs, and learning 
rate based on performance. 

The next block is Fuzzy logic. At the Fuzzy logic 
stage, a conclusion will be obtained about the technical 
condition of the motor oil of locomotive diesel 
engines. This output will verbally indicate whether the 
motor oil can be continued to be used or whether the 
motor oil of locomotive diesel engines needs  
to be replaced. 

 
 

4. Conclusions 
 
The research presented an approach to determining 

the technical condition of motor oil of locomotive 
diesel engines through the use of a detector equipped 
with an RGB sensor. This method offers a significant 
advancement over traditional motor oil analysis 
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techniques by providing a real-time, cost-effective 
solution that can be integrated into on-board systems. 
The utilization of RGB spectral data, analyzed through 
Wavelet Transform, demonstrates a high potential for 
accurately identifying wear particles in motor oil of 
locomotive diesel engines. Utilizing Wavelet 
Transform on the RGB data facilitated a reduction in 
data volume and computational energy requirements. 
This process enabled the efficient handling of the 
spectral data, enhancing the system’s performance in 
real-time applications. 

The findings underscore the efficacy of the RGB 
sensor in capturing critical data that reflects the motor 
oil’s condition, thereby enabling timely decisions 
regarding engine maintenance. Furthermore, the 
comparative analysis between direct RGB data and 
Wavelet Transformed data provides valuable insights 
into optimizing the data processing for enhanced 
efficiency and reduced computational load. 

The study established a strong correlation between 
the blue spectral range data and the concentration of 
wear particles in the oil after 214 engine hours, 
indicating significant degradation. In contrast, the red 
and green spectral ranges did not show notable 
changes, highlighting the importance of the blue 
spectrum in assessing motor oil condition. 

The work also proposes Neural Network 
architecture for determining the technical condition of 
motor oil of locomotive diesel engines. A comparison 
of the operation of Neural Networks, as well as the 
operation of the Fuzzy logic block in the proposed 
system for determining the technical condition of 
motor oil of locomotive diesel engines, will be given 
in future publications and studies. 

Future research will delve deeper into refining the 
system’s accuracy and exploring the integration of 

more advanced machine learning algorithms. This 
work lays a foundational step towards diesel engine 
maintenance protocols, with the potential to 
significantly impact the locomotive industry’s 
approach to diesel engine condition monitoring and 
maintenance practices. 
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